Aruba Air Pass Enables 5G Mobile Operators To Extend Coverage to Enterprises by Using Wi-Fi3/10/2020 Today, HPE Aruba announced its Aruba Air Pass cloud service that allows for a hand-off between cellular and Wi-Fi networks. The service is enabled by Passpoint, which is a standard created by the Wi-Fi Alliance. The idea is that a mobile operator customer can go into a building with Wi-Fi coverage and, without having to "log on" to the Wi-Fi, the user's phone will automatically connect. Using Air Pass means that mobile operators won't need to build a cellular infrastructure in these buildings for customers to continue with their phone calls.
For mobile customers to see the benefit of seamless roaming from the Air Pass service, mobile operators will need to engage in a relationship with the property owners of the building. While this seems like a lot of work, connecting to Air Pass will be far easier than it would be for a property owner to install a cellular network inside the building. Examples of in-building cellular that can operate either on licensed, shared or unlicensed spectrum is a Distributed Antenna Systems (DAS) system or licensed small cells. Building owners or operators have to build new, in-building cellular if they want cellular coverage. Managed Service Providers, such as Federated Wireless, have begun selling a service to property owners where they will manage the cellular infrastructure for the owner. Aruba has some competition for its service to allow Wi-Fi sharing to mobile operator customers. In February 2020, Cisco announced its Unified Domain Center as a means of sharing Wi-Fi coverage with mobile operators, as well, and claimed that it is at the proof of concept stage with operators. Also, Swedish software and services company, Aptilo, has created systems that allow SIM-based device users to roam onto Wi-Fi, as well. We applaud the efforts of Aruba, Cisco, Aptilo and many others who have built systems to allow device users to roam between cellular and Wi-Fi networks. There has been a lot of excitement by mobile operators and cellular equipment suppliers about the 5G opportunity to expand to enterprises. In November 2019, for instance, Nokia discussed how enterprises are adopting its Private LTE systems to allow cellular coverage at customers such as utilities and shipping ports. We have been cautious on the idea that mobile operators will get lots of new revenue from providing cellular coverage to the enterprise; a year ago, we laid out our thoughts on the 5G Enterprise hype at the MWC19 show. The implications of the emergence of services like Air Pass and the capabilities of Unified Domain Center is that Enterprise Wi-Fi coverage will be leveraged in the 5G era far more than all the hype about "5G" wiping out the need for Wi-Fi. However, we also feel that cellular systems will see growing popularity in certain enterprise verticals, as was evident at the MWC-Americas 2019 show.
0 Comments
We attended the operator and vendor consortium of 5G Americas. The themes of the show were: 5G, spectrum, cell siting, Asia-Pacific operator progress. For the second time in the past couple weeks, we saw FCC Commissioner Michael O'Reilly present, and his key messages were similar both times, focusing on CBRS, C-Band and 6 GHz. In attendance from the North American service provider side were AT&T, T-Mobile US, Shaw, and Sprint (we focused on NA operators mainly in this write-up). Notable vendors included Cisco, Commscope, Ericsson, Intel, Kathrein, Mavenir, Nokia, Qualcomm, and Samsung. We would say the most important theme from the show is the surge in interest in unlicensed spectrum, both for the use of mobile operators, as well as competing carriers, as well as by enterprises both for indoor and outdoor applications. For this write-up, we are focusing primarily on comments made by some of the leading operators who attended the conference.
AT&T discussed mmWave, future 3GPP releases, 5G phones, Mobile Edge Computing and indoor cellular, mid-band spectrum strategies, 5 GHz spectrum usage, Mobile Edge Computing (MEC), StandAlone (SA), among other topics. AT&T views mmWave as just a tool in the toolkit, so to speak, and not the only spectrum that is useful in 5G. It considers mmWave to be most helpful in urban and potentially indoor settings. Representatives said that future 5G-oriented Releases 16 & 17 are expected to be software upgrades to existing hardware and won't require new equipment to incorporate these new capabilities which will include network slicing. AT&T is making a big deal about its Mobile Edge Computing (MEC) initiative. At the conference, it emphasized MEC as having two main parts: a) expansion to about 100 edge sites (mostly Central Offices) from about 20 central locations in the LTE era and initially supporting packet core, and b) Microsoft Azure services managed end-to-end by AT&t. The company also emphasized that it plans to pursue some indoor cellular opportunities, some that currently leverage 5 GHz using LAA technology, some that will leverage CBRS and some that will leverage mmWave. We get the impression from AT&T that it is open in how it pursues future mid-band spectrum strategies. Its strategy could change based on: a) the timing of the CBRS PAL licenses (currently slated for June 25, 2020), b) the potential for C-Band private auctions (potentially in the mid 2020 timeframe), c) the potential for some or all of the 6 GHz spectrum availability (where Wi-Fi 6 would co-occupy), as well as other factors. We learned that, at least in certain regions, the company is making very ample use of 5 GHz spectrum using LAA techniques. AT&T seeing its picocells (small cells) get around 100 Mbps from LAA out of a total 130 Mbps inclusive of around three other licensed spectrums. We were surprised the company makes such ample use of unlicensed spectrum where Wi-Fi currently exists. The 5 GHz experience of AT&T leads us to think that 6 GHz, which promises to offer far more spectrum that the 5 GHz swath presently available, could be very beneficial to mobile operators and their consumers, as well as the Wi-Fi industry, and its consumers. AT&T expects that by this time next year, it will be "pushing" 5G to all its customers, part as a result of handsets adopting 5G capabilities, part the result of its network seeing nationwide coverage. Of the services that AT&T operates, it is installing mainly Packet Core in its MEC systems. AT&T is also planning to run Microsoft Azure services in its MEC locations. It expects that both Packet Core and Azure will see a 10-20 ms latency reduction by being located in MEC locations. AT&T says that StandAlone (SA) is "just new software," and downplayed the significance of the upgrade from EPC/NonStandAlone (NSA) to SA. Sprint "is all-in on 2.5 GHz mid-band deployments for 5G services." Given the company's potential merger with T-Mobile USA, we view its network-build-out choices as being somewhat limited. It has limited options because it increases its near-term value to its acquirer, T-Mobile, if it deploys 5G in 2.5 GHz. Likewise, it is doesn't implement in mmWave, this reduces overlap with T-Mobile, who is deploying there. The company reiterated that it had launched 5G in 9 markets. It is seeing its peak speeds on 5G (aided by the fact that it has simultaneously upgraded hardware to Massive MIMO) be about 3-5 times that of its 8T8R LTE systems. It currently covers 11M POPs and 2,100 square miles with 5G. Sprint also shared that it sees RFPs from customers to replace Wi-Fi with 5G, though it didn't share more about this topic. The company's experience is that in upgrading its macro base stations to Massive MIMO 64T64R capabilities, it is getting 3-4x faster throughput than its 8T8R systems, though in the field these measurements vary widely. Additionally, Sprint said that its Massive MIMO systems relative to earlier systems show "generally the same coverage," with 1-2 dB better sometimes. Sprint is exploring ORAN and vRAN but "not adopting near term." Shaw (Canada) presented its mobile LTE and 5G efforts and plans. Shaws plans are interesting because the company has significant cable services deployed in Canada. The company said nearly all the mobile technology it has installed in the past three years are "5G-ready." It will use 5G first in 600 MHz, then in mid-band (probably in 3.5 GHz) and the last in mmWave. Shaw expects that low-band 5G handsets will be available in 2020, and, similar to what AT&T said, it expects that is when 5G mobile will start in earnest in Canada. Shaw admitted that it is behind where the US operators are in deploying 5G, but offered no apologies, as it felt it is where it needs to be from a competitive standpoint in Canada. Almost laughing, Shaw explained that it would never consider deploying mmWave along highways, and that only high-density locations would get mmWave coverage. Shaw's view that mmWave is for high-density locations was shared universally by other operators in attendance, including AT&T, Sprint and T-Mobile US. T-Mobile US spokespersons explained that mmWave has seen some challenges, relative to initial expectations and that while it does get mmWave to operate beyond near-line-of-sight, the view of T-Mobile is that mmWave is "just part of 5G." T-Mobile expects 3GPP Release 16 to be completed in 2020, but that it will be 2021 before it deploys Release 16, which won't require "a massive hardware refresh" and which will incorporate industrial and connected vehicles features. T-Mobile views 5G as being appropriate for indoor installations because while mmWave has challenges penetrating glass and concrete, but when 5G operates in low and mid-band spectrums, the "issue goes away." By 2020, T-Mobile expects StandAlone packet core to be ready, but since its current EPC/NonStandAlone (NSA) systems are already virtualized, the upgrade to SA is "not a forklift" upgrade. T-Mobile says virtual RAN (vRAN) "will take time," and that it will "need accelerators," which we take to mean FPGA-based Network Interface Cards (NICs) or the like to allow servers to operate faster than just x86 processors will allow. We attended Mobile World Congress Americas (MWCa) in Los Angeles, CA this week, as well as the AT&T Spark event in San Francisco. Since 5G is launching first the US, these two events became the public events where significant 5G-related announcements happened.
Additionally, discussions about spectrum in the US market were very active discussions. Some points we picked up on:
![]() Arris held its annual investor day late last week on March 28, 2018. It was interesting: the company said "Everything is going wireless," which is an interesting admission for a company that, until about a year ago, was essentially a pureplay on wired broadband. To be sure, the company has diversified into wireless with its acquisition of Ruckus and has benefitted from the inclusion of Wi-Fi capabilities to its broadband CPE. The company sees this wireless future - and is pivoting towards it. Arris management highlighted that it expect its future to include the following growth avenues:
Additionally, the company discussed its expectations for each division, which using its 2017 mix and various projections, calculates to a 4.7% CAGR from '17 to '21. Enterprise Networking (Ruckus). Overall, the company's Enterprise Networking division, also known as Ruckus Networking, includes its Enterprise WLAN business (formerly Ruckus Wireless), the Brocade ICX Ethernet Switch product line (referred to by the company as Campus Switching), and other revenue streams such as CBRS 3.5 Ghz LTE Small Cells, as well as IoT radio modules that plug into the Ruckus Access Points like Bluetooth, LoRa and Zigbee. The company is targeting 20%+ growth for the Ruckus Networking group, which is far above the industry growth rates we expect for Enterprise plus Outdoor WLAN and Campus switching. This aggressive growth rate either implies share-taking, or growth in other products such as CBRS, Bluetooth, LoRa and Zigbee, or the the non-WLAN parts of what used to be Ruckus Wireless, such as Cloud-managed Wireless LAN services (that, for instance compete with Cisco's Meraki, Aerohive services and Mojo Networks). The company cited an expected Enterprise WLAN revenue growth projection slightly above our projection for the period '17 to '21, even if cloud-managed WiFi services were included. Network and Cloud Segment. The company said this market is growing 5% annually, and described the market generally as the Cable Modem Infrastructure, optical nodes and cable video networks market. The company generally expects to take share, compared to this market viewpoint, projecting a 4-7% long-term annual growth expectation for this business segment. It was interesting that the company said that the "mobile device explosion [is] driving offload demand," because it has been several years since "Wi-Fi offload" was a growth driver, but dissecting the comment a bit more, the company is pointing to cable operators as being "well positioned to handle [the] offload." We think Arris' strong supplier position with the major Cable MSOs in the US, especially, may indicate that there should be a strong build up of WiFi and cable infrastructure coming in the future. And, this corroborates with our own research and statements from MSOs such as Comcast. In fact, the company showed a "future" network diagram that indicates it expects its MSO customers will be delivering 5G radio, Remote OLTs (PON) and Fixed Wireless Access instead the of cable modem (DOCSIS) equipment that was indicated in the "now" chart. This implied shift from DOCSIS to PON/5G/FWA would be a dramatic shift in the company's product portfolio. Very interesting, indeed. Customer Premises Equipment (CPE) Segment. The company claims a #1 Set Top Box (STB) market share, and #2 Broadband CPE market share, with a mix of 60% video CPE and 40% broadband revenues in 2017. The company expects to grow broadband CPE to a mix of 50%+ by the year 2021, consistent with the market growth rates it cites - 4% CAGR for broadband and -.8% for video. Generally, the company is projecting long term sales trend of -5% to +1%, indicating that it lacks the direct to market exposure that would get it to a growth expectation in this segment. The company confirmed it is using NBASE-T (Multi-Gigabit Ethernet) interfaces on its home networking devices and it is planning to release 802.11ax capabilities on its portfolio, as well. Arris CPE will also include Extenders / Adapters to, at least partially, address the growth now occurring in the Consumer Mesh market. This week, we attended the Global Mobile Broadband Forum, held in London, and found several interesting points we thought we would share. Much of the focus of the conference was about 5G wireless networks, and since the show was in London, many of the service providers who we met with and listened to were European. The sponsor of this event was Huawei.
At the Ericsson Media and Analyst Briefing today, Ericsson's new CEO Borje Ekholm made his first MWC presentation, and then ceded the stage to well-known T-Mobile USA (TMUS) Chief Technology Officer, Neville Ray. We learned several things that were interesting: T-Mobile's plans for 5G rollout and 2G/3G shutdown, and Ericsson's high-level view on its strengths as 5G rolls out.
Neville Ray's comments conveyed a pragmatic and agile service provider's views:
|
CHRIS DePUY
|