This week's MWC Barcelona 2021 had several themes; the most important was that several outsiders to the telecom industry were ever-present. The new entrants – the party-crashers - included Starlink, Microsoft Azure, Amazon Web Services, Google Compute, and NVidia. These new players are forcing change either through economics, new technology, or new regulatory frameworks, or combinations thereof. We’ll touch on the importance of these crashers and then circle back to a few other ongoing themes that continue to remain relevant in this article.
Satellite broadband, while not exactly a mobile technology, will catalyze significant changes to the mobile industry. Low Earth Orbit (LEO) satellite services, evangelized today by SpaceX-owned Starlink, announced plans to spend as much as $30B in building out its constellation over its lifespan. Yet, it will reach users across the globe. Elon Musk said Starlink is in beta in 12 countries, and it plans to have ½-million users in the next 12 months. The billionaire highlighted that Starlink’s ability to reach rural populations is unlike that of terrestrial players. We think the rural reach of LEO broadband is precisely why Starlink will be so important. Musk’s pitch to the mobile industry was that of a partnership – he said that Starlink is partnering with 5G MNOs to offer satellite backhaul and rural broadband services. We view satellite broadband, and later 3GPP satellite, as critical components in the telecommunications industry, and therefore we chose to write about satellite first in this article. All three hyperscalers, Azure, AWS, and GCP, made a splash at MWC21. As a group, these infrastructure providers have already changed the way telcos operate. In fact, the hyperscalers’ architectures were the inspiration behind the decade-old telco push for Network Functions Virtualization (NFV). But, these days, hyperscalers’ operations are more than an inspiration to the telcos. MNOs are now moving some of their workloads to hyperscaler infrastructures. The evolution of these workload migrations to hyperscalers is moving in three phases, phase 1, the back-office, then phase 2, telecom core, and last, phase 3, the access layer. In the weeks leading up to MWC21, we’ve seen progress on all three workload migrations, including that on Mobile RAN. Incoming AWS CEO Adam Selipsky said at MWC that AWS is talking to “virtually every telecom operator.” Some examples of announcements made surrounding the MWC show include:
With Open RAN capabilities come the possibility that MNOs can source various RAN components from multiple vendors. Rakuten has already technically demonstrated multi-vendor sourcing (Altiostar baseband and Nokia and NEC radios). In addition to system-level multi-vendor interoperability, in previous years, multiple semiconductor companies had been bolstering their RAN offerings (Marvell, Qualcomm, EdgeQ). Marvell had previously crashed MWC (MWC19 and MWC20) and is now a RAN supplier to Samsung and Nokia. For MWC21, we saw yet another entrant to the RAN chip market, NVidia. NVidia has received pubic endorsements from Ericsson, Fujitsu, Mavenir, and Radisys. NVidia’s current chip offering is called “AI-on-5G,” and the company’s offering starts in 2021 as an “on a server.” NVidia’s next offering is expected in the 2022-2023 era and will be an “on a card” offering. Then, after 2024, NVidia will offer its “on a chip” offering.
0 Comments
In a briefing with Rakuten Mobile today, we learned two neat things: It is experimenting with 3GPP on satellite, and it hopes to announced a full-stack Rakuten Communications Platform (RCP) customer as early as next quarter. The company also shared some plans that it has for improving coverage to 96% by the end of the summer '21, and that it believes it has a 50% total cost of ownership advantage for its 5G infrastructure versus a traditional network operator.
So, what's so important about "3GPP on satellite?" If satellites are able to communicate with all cell phones and other cellular devices, this would mean that coverage could be enabled where we might need to have placed macro base stations. If we don't need macro base stations everywhere as satellites provide that coverage in sparse areas, or maybe even along highway routes, then a future cellular operator might be able to build its network with far fewer macro towers and rely more on a "barbell" approach, with small cells providing high throughput in busy areas and satellites providing coverage between busy areas. This would reduce demand for 5G base stations. Rakuten expects that its satellite partner, AST, may offer satellite coverage for Japan at the end of 2023 or the beginning of 2024 - that is a ways off. But, this means that in 3 or so years, the need for base stations may be considerably reduced. Also, Rakuten spokesperson, Tareq Amin, said he thinks it is possible that Rakuten may announce its first RCP customer as early as next quarter. We published about RCP in November 2020, around when the team first started making RCP known to the public. This means that a division of a mobile operator, Rakuten Mobile, may be selling its know-how, technology and services to another telecom operator, presumably outside of Japan. This is a big deal in that most operators buy from vendors and systems integrators, not from others who are in the same business as them. It is also a big deal because cloud companies like Amazon, Microsoft and Google all want to sell their cloud services to operators, too. And, if RCP gets there first, and sells its full stack (radio, core, billing, orchestration, OSS) it would represent a first-ever full stack services deal. |
CHRIS DePUY
|