We had the opportunity to speak with an exciting Internet Service Provider (ISP) called GeoLinks today. Skyler Ditchfield, the CEO, shared his thoughts on the recent spectrum acquisition from Verizon and how it will change the company’s addressable market. We think what GeoLinks has done with this spectrum acquisition is interesting because this is a medium-sized company buying spectrum from one of the world’s largest operators. The company is planning such a rapid expansion to many important broadband markets.
On March 25, 2021, GeoLinks announced that it had acquired approximately 80% of Verizon’s LMDS fixed use 29-31 GHz mmWave spectrum. This spectrum does not include Verizon’s mmWave spectrum holdings that it uses to service mobile users, so recent iPhone models that communicate with Verizon’s mmWave will continue to work as they always have. According to GeoLinks, this new spectrum increases its homes passed metric for residential to 90.6 million homes and businesses to 5.9 million businesses. Markets in which it acquired spectrum include New York, Los Angeles, Chicago, Philadelphia, Dallas-Ft. Worth, Atlanta, Houston, Washington, DC, Boston, Tampa-St. Petersburg, Minneapolis-St. Paul, Detroit, Miami-Ft. Lauderdale, Charlotte, St. Louse, Raleigh-Durham and Indianapolis, among others. With the recent spectrum acquisition, GeoLinks is expanding its footprint from a predominantly California (plus southern Nevada) to a nationwide coverage map. We asked Mr. Ditchfield what the company’s plans are for expanding to the new territories. We learned that the company is planning a “roll-up” strategy to acquire Wireless ISPs (WISPs) and small local wireline broadband companies. As these acquisitions occur, GeoLinks plans to offer the acquired companies’ customers the new, higher-speed wireless service in the new spectrum. GeoLinks plans new rounds of financing, which may come as soon as a couple of months from now.
0 Comments
Qualcomm made many wireless-related announcements today from its San Diego, CA headquarters, in place of making a presentation at #MWC20 in Barcelona. Top announcements included its FSM100xx 5G small cell chips customer announcements, RF-chip availability, Wi-Fi 6E demonstrations, and 5G smartphone customer announcements. FSM100xx 5G RAN endorsements. Qualcomm announced its FSM 5G RAN platform in May 2018, targeting small cells and remote radio heads and enabling bothmmWave and sub-6 GHz spectrum using 10 nm process geometry. The company listed multiple vendors and operators in its press announcement relating to FMS100xx chips. Each of the vendors shared some interesting statistics, the most important of which we share here:
Qualcomm ultraSAW Filter. Expect availability in 2H20. Hit parity in performance in 2019 and now claims that its ultraSAW Filter will exceed performance of competitors, especially in high-bands.
Wi-Fi 6E. Qualcomm demonstrated 6 GHz operation between its Networking Pro Series (Wi-Fi 6 chips for Wi-Fi infrastructure like access points and routers). Qualcomm was not specific about the timetable for delivery of 6 GHz systems, but the company hinted that the 6 GHz demonstration “underscores Qualcomm’s readiness to extend its successful Wi-Fi 6 portfolio into the 6 GHz band for a transformative Wi-Fi 6E performance, pending regulatory approval.” The company expects that mobile devices using its Snapdragon 865 Mobile chips (intended for user devices like smartphones) can operate more than 3 Gbps when using the new 6 GHz spectrum, or 1.8 Gbps when using existing 2.4 GHz and 5 GHz available today. Qualcomm said its Networking Pro Series (Wi-Fi 6 chips) have been “deployed in more than 200 designs shipping or in development.” Qualcomm Snapdragon 865 Mobile Platform. The company announced that its chip system for mobile phones that features its second-generation 5G Modem-RF system, the Snapdragon X55, has been “announced or are in development” in over 70 designs, including those from top vendors such as OPPO, Samsung, Xiaomi and ZTE. Additionally, the company made VR devices and Personal Computer (PC) announcements including partners such as Facebook (VR) and Microsoft (PC). We attended the operator and vendor consortium of 5G Americas. The themes of the show were: 5G, spectrum, cell siting, Asia-Pacific operator progress. For the second time in the past couple weeks, we saw FCC Commissioner Michael O'Reilly present, and his key messages were similar both times, focusing on CBRS, C-Band and 6 GHz. In attendance from the North American service provider side were AT&T, T-Mobile US, Shaw, and Sprint (we focused on NA operators mainly in this write-up). Notable vendors included Cisco, Commscope, Ericsson, Intel, Kathrein, Mavenir, Nokia, Qualcomm, and Samsung. We would say the most important theme from the show is the surge in interest in unlicensed spectrum, both for the use of mobile operators, as well as competing carriers, as well as by enterprises both for indoor and outdoor applications. For this write-up, we are focusing primarily on comments made by some of the leading operators who attended the conference.
AT&T discussed mmWave, future 3GPP releases, 5G phones, Mobile Edge Computing and indoor cellular, mid-band spectrum strategies, 5 GHz spectrum usage, Mobile Edge Computing (MEC), StandAlone (SA), among other topics. AT&T views mmWave as just a tool in the toolkit, so to speak, and not the only spectrum that is useful in 5G. It considers mmWave to be most helpful in urban and potentially indoor settings. Representatives said that future 5G-oriented Releases 16 & 17 are expected to be software upgrades to existing hardware and won't require new equipment to incorporate these new capabilities which will include network slicing. AT&T is making a big deal about its Mobile Edge Computing (MEC) initiative. At the conference, it emphasized MEC as having two main parts: a) expansion to about 100 edge sites (mostly Central Offices) from about 20 central locations in the LTE era and initially supporting packet core, and b) Microsoft Azure services managed end-to-end by AT&t. The company also emphasized that it plans to pursue some indoor cellular opportunities, some that currently leverage 5 GHz using LAA technology, some that will leverage CBRS and some that will leverage mmWave. We get the impression from AT&T that it is open in how it pursues future mid-band spectrum strategies. Its strategy could change based on: a) the timing of the CBRS PAL licenses (currently slated for June 25, 2020), b) the potential for C-Band private auctions (potentially in the mid 2020 timeframe), c) the potential for some or all of the 6 GHz spectrum availability (where Wi-Fi 6 would co-occupy), as well as other factors. We learned that, at least in certain regions, the company is making very ample use of 5 GHz spectrum using LAA techniques. AT&T seeing its picocells (small cells) get around 100 Mbps from LAA out of a total 130 Mbps inclusive of around three other licensed spectrums. We were surprised the company makes such ample use of unlicensed spectrum where Wi-Fi currently exists. The 5 GHz experience of AT&T leads us to think that 6 GHz, which promises to offer far more spectrum that the 5 GHz swath presently available, could be very beneficial to mobile operators and their consumers, as well as the Wi-Fi industry, and its consumers. AT&T expects that by this time next year, it will be "pushing" 5G to all its customers, part as a result of handsets adopting 5G capabilities, part the result of its network seeing nationwide coverage. Of the services that AT&T operates, it is installing mainly Packet Core in its MEC systems. AT&T is also planning to run Microsoft Azure services in its MEC locations. It expects that both Packet Core and Azure will see a 10-20 ms latency reduction by being located in MEC locations. AT&T says that StandAlone (SA) is "just new software," and downplayed the significance of the upgrade from EPC/NonStandAlone (NSA) to SA. Sprint "is all-in on 2.5 GHz mid-band deployments for 5G services." Given the company's potential merger with T-Mobile USA, we view its network-build-out choices as being somewhat limited. It has limited options because it increases its near-term value to its acquirer, T-Mobile, if it deploys 5G in 2.5 GHz. Likewise, it is doesn't implement in mmWave, this reduces overlap with T-Mobile, who is deploying there. The company reiterated that it had launched 5G in 9 markets. It is seeing its peak speeds on 5G (aided by the fact that it has simultaneously upgraded hardware to Massive MIMO) be about 3-5 times that of its 8T8R LTE systems. It currently covers 11M POPs and 2,100 square miles with 5G. Sprint also shared that it sees RFPs from customers to replace Wi-Fi with 5G, though it didn't share more about this topic. The company's experience is that in upgrading its macro base stations to Massive MIMO 64T64R capabilities, it is getting 3-4x faster throughput than its 8T8R systems, though in the field these measurements vary widely. Additionally, Sprint said that its Massive MIMO systems relative to earlier systems show "generally the same coverage," with 1-2 dB better sometimes. Sprint is exploring ORAN and vRAN but "not adopting near term." Shaw (Canada) presented its mobile LTE and 5G efforts and plans. Shaws plans are interesting because the company has significant cable services deployed in Canada. The company said nearly all the mobile technology it has installed in the past three years are "5G-ready." It will use 5G first in 600 MHz, then in mid-band (probably in 3.5 GHz) and the last in mmWave. Shaw expects that low-band 5G handsets will be available in 2020, and, similar to what AT&T said, it expects that is when 5G mobile will start in earnest in Canada. Shaw admitted that it is behind where the US operators are in deploying 5G, but offered no apologies, as it felt it is where it needs to be from a competitive standpoint in Canada. Almost laughing, Shaw explained that it would never consider deploying mmWave along highways, and that only high-density locations would get mmWave coverage. Shaw's view that mmWave is for high-density locations was shared universally by other operators in attendance, including AT&T, Sprint and T-Mobile US. T-Mobile US spokespersons explained that mmWave has seen some challenges, relative to initial expectations and that while it does get mmWave to operate beyond near-line-of-sight, the view of T-Mobile is that mmWave is "just part of 5G." T-Mobile expects 3GPP Release 16 to be completed in 2020, but that it will be 2021 before it deploys Release 16, which won't require "a massive hardware refresh" and which will incorporate industrial and connected vehicles features. T-Mobile views 5G as being appropriate for indoor installations because while mmWave has challenges penetrating glass and concrete, but when 5G operates in low and mid-band spectrums, the "issue goes away." By 2020, T-Mobile expects StandAlone packet core to be ready, but since its current EPC/NonStandAlone (NSA) systems are already virtualized, the upgrade to SA is "not a forklift" upgrade. T-Mobile says virtual RAN (vRAN) "will take time," and that it will "need accelerators," which we take to mean FPGA-based Network Interface Cards (NICs) or the like to allow servers to operate faster than just x86 processors will allow. We attended Mobile World Congress Americas (MWCa) in Los Angeles, CA this week, as well as the AT&T Spark event in San Francisco. Since 5G is launching first the US, these two events became the public events where significant 5G-related announcements happened.
Additionally, discussions about spectrum in the US market were very active discussions. Some points we picked up on:
|
CHRIS DePUY
|