650 Group
  • Home
  • Programs
    • WLAN Infrastructure
    • Telecom Core Networks
    • Ethernet Switch Programs >
      • Ethernet Switch - Total
      • Ethernet Switch - Data Center
      • Ethernet Switch - Campus
      • Ethernet Switch - Carrier Ethernet
      • Campus Networks
      • Ethernet Switch - SMB
      • Ethernet Switch – Data Center - Programmable and Accelerated Report
    • Application Delivery Controller (ADC)
    • Merchant Silicon in the Data Center
    • Market Intelligence Reports
    • Consumer IoT
    • Disaggregated Routing Report
    • Industrial Switching Report
    • Multi-Cloud Workloads Forecast and Research Report
    • Secure Access Service Edge (SASE) Forecast and Research Report
    • 800 Gbps Report
    • Infrastructure as a Service (IaaS) Hyperscaler SWOT Report
    • SONiC Report
    • Single Pair Ethernet Forecast Report
  • News
    • Press Releases
  • Blog
  • About
  • Employment
  • Contact
  • Clients
  • Infrastructure as a Service (IaaS) Hyperscaler SWOT Report

650 Group Blog

Implications of the DISH / AWS Announcement

5/5/2021

0 Comments

 
On April 21, 2021, DISH, the fourth wireless operator in the US market, and hyperscaler Amazon Web Services (AWS) announced plans to work together, whereby DISH will leverage AWS infrastructure and services to build a cloud-based 5G Open Radio Access Network.   The DISH/AWS announcement is important because this is the first 5G Radio/hyperscaler deal – or second if you count Rakuten as a hyperscaler.  We are encouraged by the DISH/AWS deal and think this represents a big step in the industry.  What’s so important is that two of the three major Radio Access Network (RAN) functions will be running on AWS; these are the Centralized Unit (CU) and the Distributed Unit (DU).  We see the DU running on the AWS service called Outposts as being the most critical part of this announcement, because historically this hardware has been delivered as a proprietary hardware system using proprietary semiconductors from the likes of vendors like Ericsson, Nokia and Huawei.  Thus, AWS’ involvement in the DISH network serves as a reminder of the opportunity for RAN vendors to deploy cloud native RAN in future cellular network deployments.

DISH is employing a terminology it called a “Capital Light” model, whereby it reduced the amount of capital spending it requires to build out its planned national network.  Key to achieving this light capital model is leveraging the capital spending done by AWS and instead leveraging what some might call an OPEX oriented model.  DISH plans to launch live cellular services in Las Vegas, NV first, and then its 5G network will cover 20% of the US population by June 2022 and then 70% by June 2023 and 75% of by June 2025, and thereafter it will continue its build to “match competitors beyond 2025.”  The company also plans to begin building enterprise focused 5G networks beginning in 2021.

In our follow-up inquiries to the AWS and DISH teams, we have learned that DISH is exercising an option to run O-RAN using AWS Graviton hardware plus Enterprise Kubernetes Services.  Additionally, DISH has the option to use Intel based COTS based hardware in parts of its network.  Thus, DISH has flexibility to deploy baseband systems on AWS or in its network, and can use Graviton or Intel systems.   We have seen AWS engage in contracts with other parties where there are minimum usage rates or dollar commitments.  We are not sure this is the case for the DISH deal, but AWS explains that it expects to deliver “thousands of site specific hardware,” while at the same time DISH expects that by mid 2023, it will have built out “15,000 cellular sites.”

Picture
What AWS plans to deliver to DISH
Picture
DISH use of AWS infrastructure
We wanted to share some insights on how this relationship appears to be structured.  It appears that many scenarios have been envisioned as to how the relationship may evolve in the future, and we think that both parties have worked in contract terms that allow some flexibility in achieving each company’s goals.  We did not review the contract between the two companies, but in a webinar presentation held April 30, 2021, executives from DISH hedged their bets somewhat on the relationship with AWS in ways we found interesting:
  • DISH is building an architecture on top of AWS that will address potential down-time that may occur at AWS.  AWS said it has designed its system to route around failures such as fiber cuts; it appears that DISH is not going to rely completely on the AWS redundancy features alone. 
  • DISH is maintaining its current working relationship with Intel, which began a year ago.  DISH explains that it its first wave of network buildouts, it has been using Intel FlexRAN components in building its 4T4R network.  DISH explains that its 4T4R network requires only “moderate compute” capabilities and that FlexRAN from Intel is sufficient for that.  But for its planned Massive MIMO Open RAN systems, it will need a new generation of acceleration.  DISH claims that it is maintaining a dialogue with Intel about these future requirements.  However, AWS executives explained that the RAN DU function will be running on AWS Outposts services, and in particular the 1U version that uses the AWS in-house developed ARM-based Graviton2 processors.  Additionally, AWS explained that “obviously we’re working with accelerator cards.  It also explained that “Intel remains a very good partner and we expect to work with Intel.”  We hone in on this topic because up till now, every Open RAN system we are aware of has used x86 and for all but the lowest throughput systems uses some type of acceleration like FPGA cards.  It seems that AWS would prefer DISH to use Graviton2 Outposts, but DISH is keeping its options open in case its Massive MIMO systems don’t work well with Graviton2.
  • Enterprise 5G deployments might not use AWS hardware and services exclusively.  DISH executive Marc Rouanne explained that “some customers may demand we put our software to other hardware.”
  • DISH will maintain its use of VMWare at least in part.  Although DISH has selected vendors that offer software systems that are cloud-native, which in the context of the presentation meant container and Kubernetes based, there are some network functions that are not cloud-native.  For those functions that are not cloud-native, DISH explained that it will use VMWare to manage these systems (we interpret this as meaning Virtual Network Functions).   Additionally, VMWare capabilities are being used “across the board” as a minimum to help onboard and test Containerized Network Functions (CNF).  And, VMWare will be used to support enterprise customers who require VMWare functionality.  Also, DISH said it was a very important requirement that AWS and VMWare works together, because DISH will “used VMWare on top of AWS services,” which could mean a lot of things, but in context, we think it means that VNFs will run on VMWare in the AWS computing environment.
0 Comments

    CHRIS DePUY
    &
    Alan weckel

    Technology Analysts

    Archives

    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017

    Categories

    All
    100 Gbps
    10 Gbps Ethernet
    1&1
    112 Gbps SERDES
    12.8 Tbps
    14.4 Tbps
    200 Gbps
    2.4 GHz
    25G PON
    25GS PON
    25GS-PON
    28 Ghz
    3.5 GHz
    3GPP
    400 Gbps
    50 Gbps
    50 Gbps SERDES
    50G PON
    5.5G
    56 Gbps SERDES
    5.925
    5G
    5G Americas
    5G Core
    5G Fixed Wireless Access
    5 Ghz
    5G SA
    5G Taxi
    600 Mhz
    60 GHz
    6G
    6 GHz
    7.125
    800 G
    800 Gbps
    802.11ac
    802.11ad
    802.11ah
    802.11ax
    802.11ay
    900 MHz
    A3
    Acacia
    Accelerate2022
    Accelleran
    Accton
    Actility
    ACX6360
    Adam Selipsky
    ADC
    Aerohive
    AFA
    AFC
    AFF A800
    Affirmed Networks
    AI
    AI-on-5G
    AIops
    Airframe
    Air Pass
    Airspan
    Alan Weckel
    Alcatel
    Alcatel Lucent Enterprise
    Alcatel-Lucent Enterprise
    Alibaba
    All Flash Array
    Altiostar
    Amazon
    AMD
    AMIT Wireless
    Amplifi
    Analytics
    Anthos
    AOI
    AP530
    AP550
    AppDynamics
    Apple
    Application Performance Management
    AppScope
    Apstra
    Aptilo
    Aquto
    Arista
    ARM
    Arris
    Artificial Intelligence
    Aruba Central
    Ascend 310
    Asic
    Asics
    Askey
    ASR 9000
    Asset Tracking
    ASUS
    Atlas 200
    ATM19
    ATMDigital
    Atmosphere
    AT&T
    Automation
    Avaya
    AWS
    Azure
    Backhaul
    Baicells
    Bai Cells
    Baidu
    Balong
    BEC Technologies
    BELL
    Benu
    BGP
    Big Switch
    BIS
    BLE
    BLE5
    BLE Beacon
    BLINQ
    Bluetooth
    Boingo
    Borje Ekholm
    British Telecom
    Broadband
    Broadcom
    BT
    Bureau Of Industry And Security
    Cable Modem
    Cambium
    Campus Switch
    Campus Switching
    Capex
    Capital Light
    Carrier
    Cat 6500
    Catalyst 9000
    C-Band
    CBRS
    CDN
    Celeno
    Centralized Unit
    Centurytel
    CEOS
    Charter Communications
    Chatbot
    Check Point Software
    Chef
    China Mobile
    China Telecom
    China Unicom
    Chungwa Telecom
    Ciena
    Cisco
    Cisco ICE
    Cisco Live
    Clearpass
    Cloud
    Cloud Managed
    Cloud-managed
    Cloud RAN
    Cloud Volumes
    Cognitive Wi-Fi
    Coherent Pluggable
    Comba
    Comcast
    Common Networks
    Commscope
    Consolidation
    Consumer Mesh
    Contact Tracing
    Contrail
    Co-packaged Optics
    Copper
    Corning
    Coronavirus
    Corvid-19
    CoSP
    COVID-19
    CPaaS
    CPE
    CPRI
    Cradlepoint
    Cribl
    Crosswork
    Crowdstrike
    CSCF
    CSP
    Cumulus
    CUPS
    CX 6200
    CyberX
    Dan Rabinovitsj
    Dark Reading
    Dartmouth
    DAS
    Data Center
    DataDog
    David Hughes
    DCI
    DD QSFP
    DD-QSFP
    DDR4
    DELL
    Delta
    Deutsche Bank
    Deutsche Telekom
    DISH
    Distributed Unit
    D-Link
    DOCOMO
    DOCSIS
    DPDK
    DPU
    DRAM
    Dritan Bitincka
    Dropbox
    ECI Telecom
    EdgeConnect
    Edgecore
    EdgeQ
    Eero
    Elasticsearch
    EMC
    ENAC
    Encore
    Entity List
    EPC
    EPON
    Ericsson
    Ericsson Router 6000
    Eric Xu
    ESP
    Etheric
    Ethernet
    Ethernet Switch
    ETSI
    Europe
    Extreme
    Extreme Networks
    F5
    F5G
    Facebook
    FBOSS
    FCC
    Federated Wireless
    Fibre Channel
    Firewall
    Fixed Wireless Access
    Flash
    FMS
    Forescout
    FortiCare
    FortiGuard
    Fortinet
    FortiOS
    FortiTrust
    FP-4
    FPGA
    Fronthaul
    Fujitsu
    FWA
    FWaaS
    GAA
    Gainspeed
    GCP
    GENBAND
    Geofencing
    GeoLinks
    German Edge Cloud
    Google
    Google Orion
    GPON
    GPU
    Graviton
    Greenlake
    H3C
    HAS2018
    HAS2019
    HAS2020
    HAS2022
    Hashicorp
    HDD
    Hong Kong Broadband
    Hotspot Tracking
    HPE
    HPE Aruba
    Huawei
    Huawei Analyst Summit 2021
    Huawei Analyst Summit 2022
    HWMBBF
    Hyperconverged
    Hyperscaler
    IaaS
    IBM
    IBrowse
    ICD
    IMS
    Infinera
    Infovista
    Innoeye
    Intel
    Intersight
    IoT
    IoT Control Center
    Ip Access
    Ipanema
    Italtel
    ITU-T SG 15
    Ixia
    JMA Wireless
    John Chambers
    John Roy
    Juniper
    Junos
    Kandy
    KDDI
    Keerti Melkote
    Ken Hu
    Keysight
    Kloudspot
    Koch Brothers
    KT
    Kubernetes
    KUIPER
    Kungpeng
    LAA
    Las Vegas
    Layer123
    LEO
    LG Electronics
    LG UPlus
    Linux
    LMDS
    Location Based Service
    LogStream
    Logstream 3.2.0
    LoRa
    LTE
    LTE-U
    Lucent
    Machine Learning
    MACSec
    Managed Service Provider
    Managed Services
    MANO
    Marco Rubio
    Marvell
    Massive MIMO
    Mavenir
    MaxLinear
    MEC
    Mediatek
    Megafon
    Meraki
    Mesh WiFi
    Metro Optical
    Michael P. O'Reilly
    Microsoft
    Midband
    Mid-market
    Millimeter Wave
    Millimeter-wave
    Mist
    Mist Systems
    Mixing Bauds
    MmWave
    Mobile
    Mobile Edge Computing
    Mobile RAN
    Modem-E
    Mojo Networks
    Motorola
    Motorola Solutions
    MPLS
    MSO
    MSP
    MTN
    Multefire
    MultiGig
    Multi Gig
    MultiTech
    MU MIMO
    MU-MIMO
    MWC
    MWC18
    MWC19
    MWC20
    MWC21
    MWCa
    MX
    NaaS
    NBASE T
    NBASE-T
    Nbn
    NCS 5700
    NEC
    NEC 540
    NetApp
    NetConductor
    Netcracker
    NetExperience
    Netgear
    NetInsight
    Netskope
    Network Services Orchestrator
    Network Slicing
    Neville Ray
    Newracomm
    New Radio
    New Relic
    NFV
    Node-H
    Nokia
    Nortel
    NPU
    NTT
    NUWAVE
    NVIDIA
    NVMe
    NVMeoFC
    Observability
    Observability Lake
    OCP
    Ocp2019
    Ocpsummit
    OFC
    #OFC18
    Ofcom
    OFDMA
    OIF
    OLT
    OmniXtend
    ONAP
    ONFConnect
    OnGo
    On Semiconductor
    ONT
    Ooka
    Open19
    OpenRAN
    Open RAN
    Open Source Wi-Fi
    OpenTelemetry
    OpenWiFi
    OpenWRT
    OPPO
    Optical
    Optical LAN
    Optical Transport
    OptiXtreme H6
    Optus
    Oracle
    ORAN
    Orange
    Orange Business Services
    Oreedoo
    OSFP
    OSS/BSS
    OTAC
    P2P
    P4
    Packet Optical
    PAL
    Parallel Wireless
    Passpoint
    Password-less
    Pensando
    Plumeria
    PON
    Posture Assessment
    Private 5G
    Private LTE
    Project Denali
    PSE 3
    PSE-3
    PTX
    Puppet
    Pure Storage
    Quad Level Cell
    Qualcomm
    Quanta
    Quantenna
    Quillion
    Radio Resource Management
    Rakuten
    Rakuten Symphony
    RAN
    RBBN
    RCP
    RCP Symphony
    RCS
    Realtek
    Reefshark
    Ribbon
    RIC
    RISC
    Riverbed
    Rivet Networks
    ROADM
    Robin.io
    Rostelecom
    Routed Optical
    Router
    Routing
    RRU
    Ruckus
    S3
    Samsung
    Sandisk
    SAS
    SASE
    Satellite
    SBC
    SD Branch
    SD-Branch
    SDN
    SD-RAN
    SDWAN
    SD WAN
    SD-WAN
    Security
    Semiconductor
    Semtech
    Sequans
    Sercomm
    Serdes
    Server
    Shaw Communications
    Siemens
    Sierra Wireless
    Silicon One
    Silicon Valley
    Silver Peak
    Single-pane
    SingleRAN
    SingleRAN Pro
    SIP Trunking
    SK Telecom
    Skype
    Small Cell
    Smartphone
    Snapdragon 865
    Softbank
    Sonus
    Sourcing
    Spark
    Spectrum
    Splunk
    Sprint
    Sp Router
    SRX
    SSD
    StandAlone
    Starlink
    STC
    Stellar
    Swisscom
    Symworld
    Tago.io
    Tanzu
    Tareq Amin
    Technicolor
    Telco Cloud
    Telecom Core
    Telecom Infra Project
    Telefonica
    Telia
    Telit
    Telus
    Tencent
    Terragraph
    Thousand Eyes
    Tiangang
    TIP
    T-Mobile
    TMUS
    Tomahawk 3
    TP Link
    TP-Link
    T&W
    Twilio
    Twitter
    TWT
    Ubiquiti
    UCaaS
    UCPE
    UI
    UltraSAW
    UniFi
    Unified Domain Center
    Unlicensed
    UTM
    UXI-6
    VaporIO
    VBLE
    VDSL
    VEPC
    Verilog
    Verizon
    Versa Networks
    VICTOR
    Virtualization
    VMWare
    VNF
    Vodacom
    Vodafone
    VoLTE
    VRAN
    VSBC
    Walt Disney
    Wan Optimization
    Water Tower Research
    Way Finder
    WBA
    WDC
    Westell
    Western Digital
    Western Digital Corporation
    WFH
    White Box
    White Paper
    Wi-F 6E
    WiFi
    Wi-Fi
    Wi-Fi 6
    WiFi 6
    WiFi-6
    Wi-Fi 6E
    WiFi Alliance
    Wi-Fi Locations Services
    WiFiNOW
    WiGig
    Wind River
    WISP
    WLAN
    Xiaomi
    Xilinx
    Xirrus
    XRAN
    Zebra
    Zero-Rating
    Zero Trust
    Zigbee
    Zipline
    ZR
    ZR+
    ZScaler
    ZTE
    Zyxel

    RSS Feed

Proudly powered by Weebly
  • Home
  • Programs
    • WLAN Infrastructure
    • Telecom Core Networks
    • Ethernet Switch Programs >
      • Ethernet Switch - Total
      • Ethernet Switch - Data Center
      • Ethernet Switch - Campus
      • Ethernet Switch - Carrier Ethernet
      • Campus Networks
      • Ethernet Switch - SMB
      • Ethernet Switch – Data Center - Programmable and Accelerated Report
    • Application Delivery Controller (ADC)
    • Merchant Silicon in the Data Center
    • Market Intelligence Reports
    • Consumer IoT
    • Disaggregated Routing Report
    • Industrial Switching Report
    • Multi-Cloud Workloads Forecast and Research Report
    • Secure Access Service Edge (SASE) Forecast and Research Report
    • 800 Gbps Report
    • Infrastructure as a Service (IaaS) Hyperscaler SWOT Report
    • SONiC Report
    • Single Pair Ethernet Forecast Report
  • News
    • Press Releases
  • Blog
  • About
  • Employment
  • Contact
  • Clients
  • Infrastructure as a Service (IaaS) Hyperscaler SWOT Report