Microsoft announced that it had acquired privately-held Affirmed Networks today. This isn't the first software/services based telecom acquisition it has made, with the 2011 acquisition of Skype being the most prominent one. Other competitors to Microsoft have made forays into the telecom market, including Facebook's 2014 purchase of WhatsApp, Oracle's 2013 acquisitions of Tekelec and Acme Packet.
Microsoft's acquisition can be viewed as both collaborative with mobile network operators or competitive with them, and it certain pits the giant against telecom equipment vendors like Ericsson, Nokia and Huawei. Let me explain.
0 Comments
Federated Wireless, a pioneer in the CBRS SAS market, just announced its plans for an AFC for the upcoming 6 GHz spectrum in the US market. The company expects that 6 GHz products and its AFC to be commercially available sometime in 2021, and potentially as early as late 2020. For those who are unfamiliar with what is behind this announcement, let us explain. Citizens Band Radio Service (CBRS) is a 150 Mhz wide broadcast band from 3.55 GHz to 3.7 Ghz in the US market, and Federated Wireless is one of main companies offering SAS, which enables multiple spectrum-users to share the 3.5 GHz spectrum. So, now that the US FCC is planning to open up the 6 GHz spectrum as unlicensed, allowing Wi-Fi 6E and 4G/5G cellular (or other systems) to operate, there’s an emerging need to coordinate what exact frequency bands in the 6 GHz range should be allowed on a per device basis; this service is called an AFC (automated frequency coordinator).
We think the timing for Federated Wireless’ AFC announcement is good. There is considerable excitement about Wi-Fi 6E (the version of Wi-Fi 6 that will operate in this new 6 GHz spectrum). Consider that two significant Wi-Fi infrastructure chip companies, Broadcom (on January 7, 2020), Qualcomm (February 25, 2020), announced products that operator in this 6 GHz spectrum. There is some controversy as to whether the AFC service will be needed for some or all of the working device types, installation locations (indoor or outdoor) and device power output levels. There are two camps, which can be summarized as “what the Wi-Fi companies want,” and “what the incumbents want.” The Wi-Fi companies have repeatedly explained that requiring an AFC for very-low power or low-power 6 GHz use in the US will slow down the market (VK Jones, VP Technology of Qualcomm Atheros said so last August, 2019, for instance). However, Federated Wireless has studied multiple major cities in the US and found that there are some cases where, in populous areas, the new 6 GHz devices could interfere with incumbent services like microwave links of mobile operators, public safety, utilities and transportation. We understand the FCC is reviewing this information and may communicate with the public as soon as April 2020. We expect the various parties (Wi-Fi players, incumbents, FCC, AFC players) to make some concessions in the coming months. Aruba Air Pass Enables 5G Mobile Operators To Extend Coverage to Enterprises by Using Wi-Fi3/10/2020 Today, HPE Aruba announced its Aruba Air Pass cloud service that allows for a hand-off between cellular and Wi-Fi networks. The service is enabled by Passpoint, which is a standard created by the Wi-Fi Alliance. The idea is that a mobile operator customer can go into a building with Wi-Fi coverage and, without having to "log on" to the Wi-Fi, the user's phone will automatically connect. Using Air Pass means that mobile operators won't need to build a cellular infrastructure in these buildings for customers to continue with their phone calls.
For mobile customers to see the benefit of seamless roaming from the Air Pass service, mobile operators will need to engage in a relationship with the property owners of the building. While this seems like a lot of work, connecting to Air Pass will be far easier than it would be for a property owner to install a cellular network inside the building. Examples of in-building cellular that can operate either on licensed, shared or unlicensed spectrum is a Distributed Antenna Systems (DAS) system or licensed small cells. Building owners or operators have to build new, in-building cellular if they want cellular coverage. Managed Service Providers, such as Federated Wireless, have begun selling a service to property owners where they will manage the cellular infrastructure for the owner. Aruba has some competition for its service to allow Wi-Fi sharing to mobile operator customers. In February 2020, Cisco announced its Unified Domain Center as a means of sharing Wi-Fi coverage with mobile operators, as well, and claimed that it is at the proof of concept stage with operators. Also, Swedish software and services company, Aptilo, has created systems that allow SIM-based device users to roam onto Wi-Fi, as well. We applaud the efforts of Aruba, Cisco, Aptilo and many others who have built systems to allow device users to roam between cellular and Wi-Fi networks. There has been a lot of excitement by mobile operators and cellular equipment suppliers about the 5G opportunity to expand to enterprises. In November 2019, for instance, Nokia discussed how enterprises are adopting its Private LTE systems to allow cellular coverage at customers such as utilities and shipping ports. We have been cautious on the idea that mobile operators will get lots of new revenue from providing cellular coverage to the enterprise; a year ago, we laid out our thoughts on the 5G Enterprise hype at the MWC19 show. The implications of the emergence of services like Air Pass and the capabilities of Unified Domain Center is that Enterprise Wi-Fi coverage will be leveraged in the 5G era far more than all the hype about "5G" wiping out the need for Wi-Fi. However, we also feel that cellular systems will see growing popularity in certain enterprise verticals, as was evident at the MWC-Americas 2019 show. We review the new announcements Cisco made public for the now-cancelled MWC20 show, and they are: BNG on unified control plane, Unified Domain Center-to-DNA Center interoperation, IoT Control Center, SP Services Edge (CDN), new Open RAN partners, NCS 540 router with CPRI support, and Crosswork automation platform. Since MWC is a show primarily focused on mobile and wireless, we think the two announcements that are most “wireless” in nature were: (a) Unified Domain Center announcement, which will unify management of WiFi to cellular operator LTE is interesting and (b) the partnerships Cisco announced with Open RAN vendors like Parallel Wireless, NEC and World Wide Technology.
Summary of announcements by Cisco: Core Networks
Unified Domain Center
IOT Control Center
SP Services Edge
Converged SDN Transport “New Engines”
Open RAN
NCS 540
Automated Network Operations
Trusted path routing
Federated Wireless announced that it will offer a managed service that will be offered to enterprises that plan to operate private cellular networks (both 4G and 5G). For companies to use Citizens Broadband Radio Service (CBRS) spectrum (3.5 GHz) in the US market, a service provider called a SAS is required; Federated is a pioneer in this SAS market. What the company announced today, though, is that not only is it going to offer SAS services to customers, but it will now offer discovery, planning, design, building, operations and support services that will allow enterprise to get the benefit of cellular coverage in their facilities.
Another very interesting facet to the Federated Wireless entry to managed services is that it has also announced selling partnerships with Amazon Web Services and Microsoft Azure. In summary, customers can visit each AWS or Azure sites, click some buttons and then Federated will show up and build and operate the cellular network to allow services such as critical communications (like employee-to-employee communications), mobility services (such as trucks moving onsite), Wi-Fi backhaul (without the need for installing new conduit and wires), IoT sensor deployment, and many other uses. Federated will be an enabler to companies who don't want to work with traditional mobile network operators in order to expand cellular coverage to their corporate locations. What this means is in the US market, companies may contact AT&T, Verizon or T-Mobile to get licensed cellular, but now they can contact Federated Wireless to get their own shared-spectrum, in this case CBRS, network that carries only their traffic. Last week, at Nokia's analyst meeting in Helsinki, it discussed its achievements and its challenges. The company’s successes include its traction and product introductions on the enterprise market, its market traction in selling Nokia’s end-to-end portfolio, and its 5G market momentum. Management reiterated that Nokia has signed 50 5G deals and its products are involved in 16 live 5G network. The company addresses some of its challenges, as well, including its delays in Systems on Chip (SoC) development progress, its diminished operating margins, competitive challenges in China, and an acknowledgement of increased price competition in the 5G era. We focus our writeup on two main topics: Enterprise and semiconductors.
Enterprise. The company leads with private LTE in selling to mostly outdoor environments where mobility needs are key. Nokia calls these networks “private wireless.” Generally, the target companies are those that are asset-intensive businesses, and Nokia has no current plans to go down-market. Nokia has sold to 120 enterprise customers as of September 2019, up from 80 as of June 2019.
Semiconductors. The company discussed semiconductors at great length at the meeting. Here is a summary of the main chips that were discussed.
ORAN and CBRS were the main themes at Mobile World Congress Americas, held in Los Angeles. I have to say, though, that unlicensed was the third most important theme, though it will emerge to the main stage in future years.
ORAN encompasses several topics woven together. ORAN is a set of common interfaces that describe how various devices in mobile RAN work together. ORAN may also represent a new way of building radio networks. Recently, new vendors are being invited to bid on major mobile network projects, including Mavenir, Altiostar, Parallel and others. And, the major market share players in mobile RAN, which include Ericsson, Nokia, Huawei, Samsung, and ZTE are being asked by operators to support ORAN. The incumbent vendors are responding in various ways: Samsung, a challenger in the market, has whole-heartedly embraced ORAN, while Huawei has only recently acknowledged the existence of ORAN. Ericsson and Nokia have embraced ORAN with the view to embrace and extend - in the sense that Microsoft used this term in the 1990s. Based on presentations made by Ericsson, Nokia, and Samsung, we expect that the incumbents, Ericsson and Nokia,will embrace ORAN but will establish a path to continue serving customers with the same vertically integrated business models of today. We are eager to see the results of mobile network operator bidding to observe how many startups win projects for wide scale deployment. CBRS. Today, CBRS is available in the US market and has been so for about a month. We had an interesting opportunity to moderate three panels on the stage at MWCa and found some very interesting indoor/campus uses for CBRS, including WiFi backhaul, secure/critical communications, surveillance, IoT/sensor monitoring. Since CBRS indoor spectrum generally allows for more output power than for WiFi, the range is better. We see this as a key advantage for CBRS users, though enterprises who take advantage of the so-called OnGo service must pay various monthly fees such as those for the SAS and potentially other ongoing services. We expect that CBRS will be successful in certain verticals. Unlicensed. We believe the existence of CBRS could uncork the value of unlicensed spectrum at 900 MHz, 5 GHz, 2.4 GHz, and 6 GHz. We are conducting significant research into each of these and other spectrums. We attended the operator and vendor consortium of 5G Americas. The themes of the show were: 5G, spectrum, cell siting, Asia-Pacific operator progress. For the second time in the past couple weeks, we saw FCC Commissioner Michael O'Reilly present, and his key messages were similar both times, focusing on CBRS, C-Band and 6 GHz. In attendance from the North American service provider side were AT&T, T-Mobile US, Shaw, and Sprint (we focused on NA operators mainly in this write-up). Notable vendors included Cisco, Commscope, Ericsson, Intel, Kathrein, Mavenir, Nokia, Qualcomm, and Samsung. We would say the most important theme from the show is the surge in interest in unlicensed spectrum, both for the use of mobile operators, as well as competing carriers, as well as by enterprises both for indoor and outdoor applications. For this write-up, we are focusing primarily on comments made by some of the leading operators who attended the conference.
AT&T discussed mmWave, future 3GPP releases, 5G phones, Mobile Edge Computing and indoor cellular, mid-band spectrum strategies, 5 GHz spectrum usage, Mobile Edge Computing (MEC), StandAlone (SA), among other topics. AT&T views mmWave as just a tool in the toolkit, so to speak, and not the only spectrum that is useful in 5G. It considers mmWave to be most helpful in urban and potentially indoor settings. Representatives said that future 5G-oriented Releases 16 & 17 are expected to be software upgrades to existing hardware and won't require new equipment to incorporate these new capabilities which will include network slicing. AT&T is making a big deal about its Mobile Edge Computing (MEC) initiative. At the conference, it emphasized MEC as having two main parts: a) expansion to about 100 edge sites (mostly Central Offices) from about 20 central locations in the LTE era and initially supporting packet core, and b) Microsoft Azure services managed end-to-end by AT&t. The company also emphasized that it plans to pursue some indoor cellular opportunities, some that currently leverage 5 GHz using LAA technology, some that will leverage CBRS and some that will leverage mmWave. We get the impression from AT&T that it is open in how it pursues future mid-band spectrum strategies. Its strategy could change based on: a) the timing of the CBRS PAL licenses (currently slated for June 25, 2020), b) the potential for C-Band private auctions (potentially in the mid 2020 timeframe), c) the potential for some or all of the 6 GHz spectrum availability (where Wi-Fi 6 would co-occupy), as well as other factors. We learned that, at least in certain regions, the company is making very ample use of 5 GHz spectrum using LAA techniques. AT&T seeing its picocells (small cells) get around 100 Mbps from LAA out of a total 130 Mbps inclusive of around three other licensed spectrums. We were surprised the company makes such ample use of unlicensed spectrum where Wi-Fi currently exists. The 5 GHz experience of AT&T leads us to think that 6 GHz, which promises to offer far more spectrum that the 5 GHz swath presently available, could be very beneficial to mobile operators and their consumers, as well as the Wi-Fi industry, and its consumers. AT&T expects that by this time next year, it will be "pushing" 5G to all its customers, part as a result of handsets adopting 5G capabilities, part the result of its network seeing nationwide coverage. Of the services that AT&T operates, it is installing mainly Packet Core in its MEC systems. AT&T is also planning to run Microsoft Azure services in its MEC locations. It expects that both Packet Core and Azure will see a 10-20 ms latency reduction by being located in MEC locations. AT&T says that StandAlone (SA) is "just new software," and downplayed the significance of the upgrade from EPC/NonStandAlone (NSA) to SA. Sprint "is all-in on 2.5 GHz mid-band deployments for 5G services." Given the company's potential merger with T-Mobile USA, we view its network-build-out choices as being somewhat limited. It has limited options because it increases its near-term value to its acquirer, T-Mobile, if it deploys 5G in 2.5 GHz. Likewise, it is doesn't implement in mmWave, this reduces overlap with T-Mobile, who is deploying there. The company reiterated that it had launched 5G in 9 markets. It is seeing its peak speeds on 5G (aided by the fact that it has simultaneously upgraded hardware to Massive MIMO) be about 3-5 times that of its 8T8R LTE systems. It currently covers 11M POPs and 2,100 square miles with 5G. Sprint also shared that it sees RFPs from customers to replace Wi-Fi with 5G, though it didn't share more about this topic. The company's experience is that in upgrading its macro base stations to Massive MIMO 64T64R capabilities, it is getting 3-4x faster throughput than its 8T8R systems, though in the field these measurements vary widely. Additionally, Sprint said that its Massive MIMO systems relative to earlier systems show "generally the same coverage," with 1-2 dB better sometimes. Sprint is exploring ORAN and vRAN but "not adopting near term." Shaw (Canada) presented its mobile LTE and 5G efforts and plans. Shaws plans are interesting because the company has significant cable services deployed in Canada. The company said nearly all the mobile technology it has installed in the past three years are "5G-ready." It will use 5G first in 600 MHz, then in mid-band (probably in 3.5 GHz) and the last in mmWave. Shaw expects that low-band 5G handsets will be available in 2020, and, similar to what AT&T said, it expects that is when 5G mobile will start in earnest in Canada. Shaw admitted that it is behind where the US operators are in deploying 5G, but offered no apologies, as it felt it is where it needs to be from a competitive standpoint in Canada. Almost laughing, Shaw explained that it would never consider deploying mmWave along highways, and that only high-density locations would get mmWave coverage. Shaw's view that mmWave is for high-density locations was shared universally by other operators in attendance, including AT&T, Sprint and T-Mobile US. T-Mobile US spokespersons explained that mmWave has seen some challenges, relative to initial expectations and that while it does get mmWave to operate beyond near-line-of-sight, the view of T-Mobile is that mmWave is "just part of 5G." T-Mobile expects 3GPP Release 16 to be completed in 2020, but that it will be 2021 before it deploys Release 16, which won't require "a massive hardware refresh" and which will incorporate industrial and connected vehicles features. T-Mobile views 5G as being appropriate for indoor installations because while mmWave has challenges penetrating glass and concrete, but when 5G operates in low and mid-band spectrums, the "issue goes away." By 2020, T-Mobile expects StandAlone packet core to be ready, but since its current EPC/NonStandAlone (NSA) systems are already virtualized, the upgrade to SA is "not a forklift" upgrade. T-Mobile says virtual RAN (vRAN) "will take time," and that it will "need accelerators," which we take to mean FPGA-based Network Interface Cards (NICs) or the like to allow servers to operate faster than just x86 processors will allow. We attended the CBRS Alliance event in Washington DC today, and by our rough estimate, about 350-400 people were in attendance representing groups such as regulators, legislators, lawyers, technology vendors, property owners, service providers, investors, media and analysts. We were impressed with the widespread interest in the new shared spectrum technology and services running in the 3.5 GHz band that is now called “OnGo.” We have researched CBRS for many years and found several acronyms and CBRS-specific terminology to be blossoming. We found several themes at the CBRS Alliance event and a follow-on event at Federated Wireless, a SAS service provider, of special note: a) the OnGo experience will serve as a mold for regulators, operators and other interested parties not just in the US, but also the rest of the world, b) Tier 1 operators and WISPs appear focused on Fixed Wireless Access (FWA) deployments in CBRS spectrum, at least initially, c) many presenters focused on the “OnGo backhaul to gateways” use-case, at least as an initial opportunity, d) interested parties have a concern that PAL licenses may become very expensive when the auctions occur, and e) there were a very large number of devices supporting OnGo at this event. Acronym soup. The CBRS Alliance did its best to explain the various acronyms and how the various players work together. It would take at least six pages to cover just the top-level details. The idea here is that the 150 MHz of spectrum in the 3.5 GHz range was previously used exclusively by the US Department of Defense and is now going to be shared using a three-tier process, where the military (the incumbent) will have use of it when it needs, then private license holders will get next dibs (PAL), followed by general users (GAA). Starting today, GAA users will begin use of the spectrum in the Initial Commercial Deployment (ICD) that was announced today, starting at 9 AM Eastern. A group of service providers called Spectrum Access System (SAS) providers have been authorized to install radios on the US coastline that sense when the military is using the spectrum and send channel-use information to equipment that is operating in the CBRS spectrum. These SAS providers will, therefore, coordinate the frequencies between incumbent, PAL, and GAA users. Our view on why OnGo and “Shared spectrum” matters. We expect that by sharing spectrum amongst various parties, more traffic can move across a smaller range of frequency than by using the more common method of auctioning off frequency bands to be used exclusively by one entity. We estimate that shared frequency will carry ten-times more traffic than frequency bands licensed for the exclusive use of single entities. Thus, it is for the greater good that this OnGo / CBRS experience go the distance and allow a public demonstration of whether multi-tiered shared spectrum can succeed or not. Already, we have the experience of shared spectrum in the 2.4 GHz and 5 GHz bands used by WiFi – there is no doubt this has been successful; in fact, most public estimates show about 80% of smartphone traffic is carried by WiFi rather than cellular systems, all of which as of yesterday was carried on licensed spectrum. At the CBRS Alliance event, guest speaker, US FCC Commissioner Michael P. O’Reilly said that based on the success of OnGo, he expects similar models could be applied to additional spectrum (and he implied this might the sequential order of launch): C-band (3.7-4.2 GHz), 3.45-3.55 GHz, 3.1-3.45 GHz and 7 GHz (which we understand is meant to be the same thing as what is being discussed at 6 GHz by the WiFi community). FWA opportunity is front and center. Charter and AT&T focused their comments on their plans to deploy fixed broadband systems. AT&T shared some impressive statistics about the performance of recent trials using Massive MIMO cell sites using distributed RAN over CBRS spectrum, which is connected to indoor baseband over fiber optics to the radio sites and then connects wirelessly to customer premises equipment mounted at the roofline: it said it achieved 140x12 Mbps at slightly over one mile over line of sight using 20 Mhz channels. Charter discussed it had deployed its first commercial FWA in Davidson City, NC to rural locations. It also discussed how it uses dual SIM systems to allow customer coverage to Verizon’s cellular network. Charter also discussed private LTE, neutral host, and Industrial IoT use cases. The Wireless Internet Service Provider’s Association (WISPA) President spoke about its members’ enthusiasm for OnGo and explained that 100’s of WISPs used the 3.65 GHz spectrum and expects more will use the 3.5 GHz / CBRS spectrum. Currently, WISPA says WISPS in the US have 6 million customers. OnGo as a backhaul. We detected a theme that seems durable: CBRS spectrum can be used by enterprises with far-flung operations to save costs by reducing the installation of wired / optical cables and associated infrastructure. There was an impressive list of vendors who had equipment at the show, a number of which were gateway devices that made connections between CBRS and other well-known protocols such as Ethernet and WiFi, to name a couple. While OnGo/CBRS support is not as widespread on devices today, IoT devices supporting other wired and wireless systems certainly are, the list of which includes WiFi, Zigbee, Bluetooth, Ethernet and more. We were taken by how compelling some presenters made a case for using CBRS simply assuming a reduction in new cabling to enable new systems such as kiosks, surveillance, digital signage, farming, and so on. Many of these examples would increase the deployment of existing protocols like WiFi, Zigbee, Bluetooth, and Ethernet, instead of reducing their demand. The idea that OnGo/CBRS competes with existing systems may be incorrect. PAL auctions. Commissioner O’Reilly said PAL auctions are scheduled for June 25, 2020. In our formal and informal interviews, we understand there is a growing concern that CBRS spectrum auctions could be aggressively pursued not only by existing Tier 1 mobile operators but also by other players, not least of which could include MSOs and maybe even “Big Tech” companies. Since the 3.5 GHz spectrum is where many countries besides the US have begun deploying 5G services, making equipment in these frequency bands commonplace, there is ample reason to want to use this spectrum in the US. Bidders may raise the price high enough that enterprises will choose not to compete, and won’t view the CBRS spectrum as attractive as they had hoped. In this case, PAL would look quite a bit more like a typical licensed spectrum, similar to other auctions. OnGo devices abound. At the show, the following vendors had devices on show (see pictures): Sercomm, MultiTech, Sierra WIreless, Zyxel, Encore, Cradlepoint, AMIT Wireless, Commscope / Ruckus, Accelleran, Bai Cells, Cambium, Samsung, Google, LG Electronics, Sequans, Telit, JMA Wireless, Motorola Solutions, Cisco, BEC Technologies, Ericsson, ip access, BLINQ, Comba Telecom, and Westell. We attended the Mobile World Congress last week in Barcelona along with an estimated 104,00 others from nearly every country in the world. We met with over 42 companies and nearly 200 people at the show and attended many press announcements. While most of the MWC19 headlines were about 5G, we were struck that much of the hyped growth will in fact be the result of deployments in enterprises and could be served using unlicensed (or lightly licensed) spectrum. Many of the presentations and product announcements suggested as much, if you read between the lines. We'll step through these two, enterprise and unlicensed next. The Enterprise opportunity. A major theme we picked up at the Mobile World Congress show is simple: that for the mobile telecom market to grow, 5G must expand to the enterprise. We see ample evidence that without an expansion to the enterprise, the cellular market as we know it will likely experience declines as consumers expect more bandwidth for less in the future. The 5G narrative at the MWC19 show was straightforward: German & Chinese robots, trucks and drones need 5G to unlock the potential for future growth. There were robots, drones and trucks bleeping and whirring to make the point for visitors. We wouldn't argue with the contention that robots and very fast moving vehicles that are controlled remotely need very low latency; yet, there are so many use cases that don't actually need such low latencies. Wireless is just a small part of "Enterprise." Enterprise 5G use cases being presented at MWC, including the wirelessly controlled robot, involved far more than just a wireless connection to succeed. To automate a workplace with robots, there is far more technology that has to be brought to market, including software, integration, wireline networking and the list goes on. None of these capabilities have traditionally been delivered by telecom equipment vendors; they have been delivered by vendors who have served the enterprise market (examples would be Cisco, IBM, Oracle, etc.). Unlicensed Opportunity is Robust. In both the enterprise market and the outdoor market, unlicensed spectrum has tremendous potential. This goes for a) WiFi, which is already immensely popular, b) for in-building 'lightly licensed' CBRS (a US-only market), c) the soon-to-be released 6 Ghz spectrum, as well as d) outdoor mid-band spectrum like 5 Ghz (already very popular), e) outdoor 60 Ghz (like the kind relating to the Facebook Terragraph project) and f) 900 Mhz LoRa. While each of these unlicensed (or lightly licensed) frequencies was discussed at the show, 5G licensed was so overwhelmingly promoted it was hard for these exciting unlicensed markets to get any airtime. We think this lack coverage relatively speaking is a dis-service and we'll touch on just a few of them in this post. Wi-Fi isn't going away. Related to the enterprise 5G topic, we found points and counterpoints about 5G versus WiFi interesting. Huawei's Enterprise group issued a press release about its 802.11ax (WiFi-6) expectations and how important WiFi is for the enterprise market. On the other hand, Huawei's telecom group was pursuing a press agenda about partnering with Operators to pursue the 5G market. Few companies on earth possess as broad a produt portfolio as Huawei, who has ample expertise, market share and credibility in both the mobile wireless market and the enterprise wireless market. We felt this dual-message (5g AND WiFi) was well-balanced. On the other hand, vendors and operators who have historically focused on cellular-only were pushing a "5G will displace WiFi" or at least a "5G is the only solution for mission critical enterprise" agenda. We feel that 5G-only in the enterprise message is to broad-based; we think 5G in the enterprise is far more nuanced because: ![]() 802.11ax/WiFi-6 is cellular-like. 802.11ax, which was launched commercially in 4Q18, incorporates many cellular-like capabilities. Many of the technical merits debates presented at MWC compared older 802.11ac WiFi against LTE and 5G NR. This is not a fair comparison because both 5G NR and 802.11ax actually began shipping commercially generally at the same time (4Q18 and 1Q19). There is very little overlap between the Wi-Fi opportunity and that for cellular. The overlap in opportunities being discussed as the 5G enterprise opportunity at MWC have surprisingly little overlap with the vertical industries currently being served by Enterprise-class WiFi. Take manufacturing, which represents 9% of the Enterprise WLAN market by units in 4Q18. Or the outdoor WLAN market, which is only 3% of total Enterprise-class market in 4Q18 by shipments. The point is, there is very little overlap between the Enterprise WLAN market and the 5G enterprise market being discussed at MWC. LTE will be the workhorse for many years. Additionally, let's consider the fact that many of the use-cases being discussed at MWC will initially be served by LTE, not 5G. In the enterprise market, the use of LTE in unlicensed (or lightly licensed, like the US's CBRS) bands is often called private LTE. The main difference between unlicensed LTE and licensed LTE is that with unlicensed, the enterprise can work directly with enterprise-focused VARs, resllers, solutions providers and complementary equipment suppliers, while with licensed LTE, the enterprise will need to work directly with its local mobile service provider who owns the spectrum, likely ensuring that the operators becomes the prime integrator of the project, or at least part of it. Private LTE will therefore have fewer parties involved (no operator), lower monthly costs (no operator) and will likely get the project to completion faster (fewer parties and a prime vendor/contractor/solutions-provider with expertise in the enterprise's vertical market). So, why not consider unlicensed/lightly-licensed LTE instead of licensed 5G to achieve the goals illustrated in many of the 5G use cases at MWC? Where will WiFi lose out? If it has wheels or wings on it, Wi-Fi is not your friend - look to cellular.
To conclude, yes, 5G will fit some very exciting use-cases, especially those for low-latency applications. These are indeed exciting and deserve attention. We see it this way for the wireless industry: if the things involved have wheels or wings, or are of such high value that you must use cellular, there's a good chance LTE will cut it. And next, it makes sense to consider using unlicensed spectrum - which is just emerging as viable for many uses. |
CHRIS DePUY
|