Today's big news from the FCC is that it will open up 6 GHz to Wi-Fi and other unlicensed uses. The FCC authorizes "1,200 megahertz of spectrum in the 6 GHz band (5.925–7.125 GHz) available for unlicensed use," and further explains that it authorizes "standard-power devices in 850 megahertz in the 6 GHz band. An automated frequency coordination system will prevent standard power access points from operating where they could cause interference to incumbent services." We see that this vote is very beneficial to Wi-Fi chip and systems companies that serve both consumer and enterprise markets. We also expect that outdoor systems that take advantage of this new spectrum may benefit wireless ISPs (WISPs) and their equipment suppliers. And, also, the FCC's statement that an automated frequency coordination (AFC) system will be used to prevent interference from existing microwave transmission systems. With that background, we have compiled a list of companies that will benefit from the FCC's vote.
WLAN Semiconductor companies Broadcom, Qualcomm, ON Semi, Celeno, and Intel. In our research of the WLAN Infrastructure semiconductor market, these are the vendors we expect to sell Wi-Fi radio chips to devices such as Access Points, Broadband Customer Premises Equipment (CPE) with WLAN, and Consumer Routers. A new class of Wi-Fi that takes advantage of 6 GHz is now called Wi-Fi 6E. Broadcom and Qualcomm have already made statements about Wi-Fi 6E in the past month or two, and others somewhat more recently. Historically, Broadcom and Qualcomm have enjoyed significant market shares of the enterprise WLAN Access Point market, while players in the consumer AP/router/CPE have included a wider list of players including Broadcom, Qualcomm, ON Semi (formerly Quantenna), Celeno, Intel, Realtek, Mediatek and others. Enterprise WLAN companies Cisco, HPE Aruba, Commscope, Extreme Networks and Juniper. While each of these companies has launched Wi-Fi 6 products over the past couple of years that operate in 2.4 GHz and 5 GHz, we expect this group of companies to release Wi-Fi 6E products that connect over 6 GHz over the next year. We expect initially that 6E enterprise products will sit at the high end of product portfolios, selling at higher prices than 5 GHz and lower products. The FCC commented in today's press release that "The notice also seeks comment on increasing the power at which low-power indoor access points may operate," which means that there is still some work to do in figuring out whether these Wi-Fi 6E devices can operate at powers levels more common in enterprises without needing to connect to an AFC. We are sure there is more to come on this topic. Consumer WLAN Infrastructure companies NETGEAR, Commscope, Technicolor, Amazon and Google. We expect NETGEAR to be an aggressive player in Wi-Fi 6E, just as it released super high-end Wi-Fi 6 products in its Nighthawk product line. We expect Broadband CPE vendors such as Commscope (through its Arris brand), Technicolor and others to benefit as they seek to capitalize on the new spectrum, which should allow the delivery of Wi-Fi at higher speeds and to more devices in the home. We wouldn't be surprised to see consumer mesh vendors such as Amazon (through its eero acquisition) and Google to offer Wi-Fi 6E products, but these probably come a bit later than traditional router and Broadband CPE devices. Wireless ISPs such as Etheric Networks and Common Networks (both located near the 650 area code that we used to name our company, 650 Group) will likely benefit as they will be able to offer new WISP services over the new 6 GHz spectrum. Since the spectrum is new, essentially unused and there's lots of it, we expect that these, and other WISPs in the US market, can benefit by expanding beyond the current unlicensed spectrums commonly used today, such as 60 GHz, 5 GHz, 2.4 GHz and 900 MHz spectrums. We think it might take a year or two before the WISPs can capitalize on these spectrums, but we see it as a windfall. WISP suppliers such as Ubiquiti Networks, Cambium Networks, Airspan, and others will be likely beneficiaries. These suppliers sell to WISPs and other operators to enable "last mile" services that compete with fixed-line broadband services such as cable modem, DSL and PON. As we alluded to above, the 5 GHz spectrum is quite crowded, and thus, as 6 GHz becomes available for outdoor use, we expect that a new class of equipment will take advantage of this ample spectrum to deliver broadband to a more significant number of business and consumers. The FCC has a "goal of making broadband connectivity available to all Americans, especially those in rural and underserved areas," according to its 6 GHz press release today, and we see WISPs as one of the main constituents of serving this goal. Mobile network operators AT&T, Verizon, T-Mobile, and US Cellular. Similar to WISPs, we expect that mobile operators will eventually leverage 6 GHz to deliver Fixed Wireless Access (FWA) services (and potentially mobile services) to consumers and businesses. In suburban and rural areas, we have already seen some operators, notably Verizon, deploy FWA in licensed mmWave spectrum (in 20 GHz and 40 GHz ranges) - we have seen operators pare back on plans to deliver services, though they haven't stopped deployments or anything. But, we see 6 GHz could puff some new life into FWA plans because this is a lot of new frequency and since it is lower frequency than mmWave, does not suffer as much from immovable obstacles such as tree leaves, windows and precipitation. Additionally, we see mobile services could benefit as well, as we have already seen operators such as AT&T leverage 5 GHz unlicensed spectrum in delivering mobile service on its small cells in locations such as New York City, so we would expect mobile operators to eventually take advantage of 6 GHz in a similar fashion. But, incumbent services (point to point microwave systems) are more likely to interfere with mobile operators' plans in urban areas, where paradoxically, there is more need for this extra bandwidth, so we think operators will take some time to sort this interference out. AFC services operators such as Federated Wireless. Given that the FCC announced a specific need for AFC services in its media blitz today (see above), we point out that Federated Wireless has already announced an AFC service. Just as Federated has competition in its CBRS SAS service from players such as Commscope, we would not be surprised to see new competition in AFC services.
0 Comments
Big themes at the show were WiFi-6, 6 GHz, and 802.11ah. We share some comments about the following organizations: WiFi Alliance, Commscope, Newracomm, Celeno, Cambium, Juniper Networks, On Semiconductor, Extreme Networks, Webb Search, Facebook, UK's Ofcom, Huawei, and 650 Group. The WiFi Alliance and a handful of other speakers commented that WiFi-6 has lower latency than 5G, but the Alliance conceded that cellular had better mobility. We think the WiFi community is not doing enough to promote WiFi-6’s low latency capabilities Commscope expects 6 GHz 802.11ax products to be shown at the CES show in January 2020 and that FEM and filters are not available today but will be by year-end or early 2020. Newracomm is an 802.11ah (900 MHz WiFi) chip company that had won an award at the show. It claims to be an early leader in the market and based on comments made during presentations, we expect by 2H20, we will see systems and IoT services based on these types of chips. Celeno, a stand-alone WiFi chip company, demonstrated radar on WiFi chip capability - the company won multiple award at the show. The company expects that a year from now, its Doppler on WiFi will emerge in products from SPs such as BT, Orange, and Comcast. The Doppler service only consumes about 3-5% of throughput capability when using Doppler and enables some very interesting capabilities such as fall detection, proximity detection, people counting and arm gestures. ON Semiconductor's Quantenna group won an award at the show. Cambium, in a presentation, explained that it is looking at an expansion to CBRS, 5G FWA backhaul, and 60 GHz. Juniper Networks has been hiring in Europe as it expands its enterprise sales capabilities. It’s recently hired team made a positive impression on the audience. We tweeted about how great and fun the presentation by recent hire Jussi Nivikiemi’s presentation. Extreme Networks presented its view that Artificial Intelligence won’t replace IT workers - it will just make them better. A spectrum consultant - Webb Search - said that DFS is not working in the UK in 5 GHz and wastes a lot of bandwidth - most WiFi products don’t bother trying to operate one the spectrum covered by DFS. He advocated for using a database in the sky approach similar to what is being proposed for 6 GHz. UK's Ofcom representative, Christina Data, explained that it is researching both 5 GHz and 6 GHz as a comprehensive solution. Ms. Data acknowledged that DFS may have some challenges and was diplomatic in response to questions about how 6 GHz will emerge. Huawei advocated for an unpopular viewpoint (at a WiFi show) that 6 GHz device makers should register for IMT designation. In a panel that included German WiFi equipment vendor Lancom and Commscope, the other two vendors made counterpoints, including that this move to IMT will delay the rollout of 6 GHz by at least four years. Facebook is advocating a non-AFC approach to low power 6 GHz in the US market. We have learned through multiple sources that it has recently a demonstrated a prototype of an AFC, however. 650 Group. The Chris DePuy presentation hit on three topics: unlicensed and shared spectrum impact on WiFi, WiFi and WiFi-6 shipments, and WiFi semiconductors.
We attended the CBRS Alliance event in Washington DC today, and by our rough estimate, about 350-400 people were in attendance representing groups such as regulators, legislators, lawyers, technology vendors, property owners, service providers, investors, media and analysts. We were impressed with the widespread interest in the new shared spectrum technology and services running in the 3.5 GHz band that is now called “OnGo.” We have researched CBRS for many years and found several acronyms and CBRS-specific terminology to be blossoming. We found several themes at the CBRS Alliance event and a follow-on event at Federated Wireless, a SAS service provider, of special note: a) the OnGo experience will serve as a mold for regulators, operators and other interested parties not just in the US, but also the rest of the world, b) Tier 1 operators and WISPs appear focused on Fixed Wireless Access (FWA) deployments in CBRS spectrum, at least initially, c) many presenters focused on the “OnGo backhaul to gateways” use-case, at least as an initial opportunity, d) interested parties have a concern that PAL licenses may become very expensive when the auctions occur, and e) there were a very large number of devices supporting OnGo at this event. Acronym soup. The CBRS Alliance did its best to explain the various acronyms and how the various players work together. It would take at least six pages to cover just the top-level details. The idea here is that the 150 MHz of spectrum in the 3.5 GHz range was previously used exclusively by the US Department of Defense and is now going to be shared using a three-tier process, where the military (the incumbent) will have use of it when it needs, then private license holders will get next dibs (PAL), followed by general users (GAA). Starting today, GAA users will begin use of the spectrum in the Initial Commercial Deployment (ICD) that was announced today, starting at 9 AM Eastern. A group of service providers called Spectrum Access System (SAS) providers have been authorized to install radios on the US coastline that sense when the military is using the spectrum and send channel-use information to equipment that is operating in the CBRS spectrum. These SAS providers will, therefore, coordinate the frequencies between incumbent, PAL, and GAA users. Our view on why OnGo and “Shared spectrum” matters. We expect that by sharing spectrum amongst various parties, more traffic can move across a smaller range of frequency than by using the more common method of auctioning off frequency bands to be used exclusively by one entity. We estimate that shared frequency will carry ten-times more traffic than frequency bands licensed for the exclusive use of single entities. Thus, it is for the greater good that this OnGo / CBRS experience go the distance and allow a public demonstration of whether multi-tiered shared spectrum can succeed or not. Already, we have the experience of shared spectrum in the 2.4 GHz and 5 GHz bands used by WiFi – there is no doubt this has been successful; in fact, most public estimates show about 80% of smartphone traffic is carried by WiFi rather than cellular systems, all of which as of yesterday was carried on licensed spectrum. At the CBRS Alliance event, guest speaker, US FCC Commissioner Michael P. O’Reilly said that based on the success of OnGo, he expects similar models could be applied to additional spectrum (and he implied this might the sequential order of launch): C-band (3.7-4.2 GHz), 3.45-3.55 GHz, 3.1-3.45 GHz and 7 GHz (which we understand is meant to be the same thing as what is being discussed at 6 GHz by the WiFi community). FWA opportunity is front and center. Charter and AT&T focused their comments on their plans to deploy fixed broadband systems. AT&T shared some impressive statistics about the performance of recent trials using Massive MIMO cell sites using distributed RAN over CBRS spectrum, which is connected to indoor baseband over fiber optics to the radio sites and then connects wirelessly to customer premises equipment mounted at the roofline: it said it achieved 140x12 Mbps at slightly over one mile over line of sight using 20 Mhz channels. Charter discussed it had deployed its first commercial FWA in Davidson City, NC to rural locations. It also discussed how it uses dual SIM systems to allow customer coverage to Verizon’s cellular network. Charter also discussed private LTE, neutral host, and Industrial IoT use cases. The Wireless Internet Service Provider’s Association (WISPA) President spoke about its members’ enthusiasm for OnGo and explained that 100’s of WISPs used the 3.65 GHz spectrum and expects more will use the 3.5 GHz / CBRS spectrum. Currently, WISPA says WISPS in the US have 6 million customers. OnGo as a backhaul. We detected a theme that seems durable: CBRS spectrum can be used by enterprises with far-flung operations to save costs by reducing the installation of wired / optical cables and associated infrastructure. There was an impressive list of vendors who had equipment at the show, a number of which were gateway devices that made connections between CBRS and other well-known protocols such as Ethernet and WiFi, to name a couple. While OnGo/CBRS support is not as widespread on devices today, IoT devices supporting other wired and wireless systems certainly are, the list of which includes WiFi, Zigbee, Bluetooth, Ethernet and more. We were taken by how compelling some presenters made a case for using CBRS simply assuming a reduction in new cabling to enable new systems such as kiosks, surveillance, digital signage, farming, and so on. Many of these examples would increase the deployment of existing protocols like WiFi, Zigbee, Bluetooth, and Ethernet, instead of reducing their demand. The idea that OnGo/CBRS competes with existing systems may be incorrect. PAL auctions. Commissioner O’Reilly said PAL auctions are scheduled for June 25, 2020. In our formal and informal interviews, we understand there is a growing concern that CBRS spectrum auctions could be aggressively pursued not only by existing Tier 1 mobile operators but also by other players, not least of which could include MSOs and maybe even “Big Tech” companies. Since the 3.5 GHz spectrum is where many countries besides the US have begun deploying 5G services, making equipment in these frequency bands commonplace, there is ample reason to want to use this spectrum in the US. Bidders may raise the price high enough that enterprises will choose not to compete, and won’t view the CBRS spectrum as attractive as they had hoped. In this case, PAL would look quite a bit more like a typical licensed spectrum, similar to other auctions. OnGo devices abound. At the show, the following vendors had devices on show (see pictures): Sercomm, MultiTech, Sierra WIreless, Zyxel, Encore, Cradlepoint, AMIT Wireless, Commscope / Ruckus, Accelleran, Bai Cells, Cambium, Samsung, Google, LG Electronics, Sequans, Telit, JMA Wireless, Motorola Solutions, Cisco, BEC Technologies, Ericsson, ip access, BLINQ, Comba Telecom, and Westell. On August 8, 2019, publicly-traded Cambium announced that it had completed the acquisition of the Xirrus products and cloud services from privately-held Riverbed Technology, Inc. Xirrus has been a vendor in the Enterprise WLAN market for a while now and has been associated with its high-performance enterprise-class WLAN products as well as its cloud-managed services. In our research, we find Xirrus has done well in the large venues, the education, government, and retail markets.
We interviewed the team at Cambium today and learned that the company is committed to using channels as a distribution strategy for the combined portfolio. Additionally, the team told us it will be supporting both Cambium WLAN customers as well as Xirrus customers, and that, over time, the products and services will be converged. We think it makes sense to rationalize the products, which will allow future customers to take advantage of developments made at each of the organizations. The team explained that Cambium will be focusing primarily on medium and small-sized customers and that it will not be pursuing large enterprises associated with the Fortune 1000, instance. The timing of Cambium’s acquisition makes sense on several counts. First, it just completed its Initial Public Offering and is more well-capitalized than when it was a privately-held company. Second, during its IPO, Cambium identified that it expects its exposure to the enterprise market is key to its growth, so getting more exposure here will increase it further. Third, several other companies have acquired enterprise WLAN vendors, and Cambium is part of this greater trend. For instance, Arista Networks completed its acquisition of Mojo Networks in late 2018 and Juniper Networks closed its acquisition of Mist Systems at the end of 1Q19. |
CHRIS DePUY
|