Today, Rakuten announced that has acquired the rest of Open RAN startup, Altiostar. It already owned 67% of the pioneering vendor, and paid another $370 million to acquire the rest, at a valuation just over $1 billion. The company is adding Altiostar to its Rakuten Communications Platform (RCP) capabilities now known as Symphony, that it is selling to mobile network operators. The company also announced its first commercial customer for RCP Symphony, German startup mobile operator called 1&1. Now that RCP Symphony has expanded to include RAN, the total system is rather comprehensive (shown below). The company shared what is included in the Symphony suite, which can be broken into five major pieces: 1) Internet & Ecosystem Services, 2) Digital Experience, 3) Intelligent Operations, 4) Network Functions, and 5) Unified Cloud. Compared to traditional telecom equipment companies like Ericsson, Nokia and Huawei, who have significant parts of their revenue exposure in the last 4 of the major pieces that Rakuten offers in Symphony. What’s different is Rakuten will be offering Membership & Loyalty Platforms, Media & Gaming Platforms, Payment & Finance Platforms, and Marketplace. Additionally, Rakuten can offer Cloud Infrastructure, similar to what Amazon Web Services, Microsoft Azure and Google Compute offer. We think Rakuten is taking on a lot by offering Symphony, but it has proven that many, if not all, parts already work – that’s because it has 4 million Japanese subscribers on its Rakuten Mobile Network already. That is a big endorsement.
The 1&1 deal includes the entire RCP full stack and is structured as a “Design-Build-Operate” contract. The plan is to start work “next quarter,” and all engineering is done in-house by Rakuten and the team will manage installation done by others. By 1Q22, Rakuten will be deploying commercially for 8 years, and its operation plans last 10 years. The mix between base stations, servers and network software is 70% radio access network and 30% on the rest. Hardware and software mix is 65% hardware, rest software and services. RCP provides an “open-book” approach on purchasing of hardware to its customer. Rakuten claims it is in discussion with many potential customers and partners around the world about RCP (this includes Altiostar discussions), which include in the Americas, 27 client interactions; In Europe, 19 client interactions; in Middle East & Africas, 11 client interactions; Russia & CIS, 5 client interactions; and in Asia Pacific, 22 client interactions.
0 Comments
![]() Before the consolidation in the Mobile Radio Access Network (MRAN) market that occurred in the past decade during Huawei’s ascendancy, there were a dozen major RAN vendors. They included Motorola, Lucent, Alcatel, Siemens, Nokia, Ericsson, NEC, Fujitsu, Samsung, Nortel, Huawei and ZTE, and they hailed from the US, France, Germany, Finland, Sweden, Japan, Korea, Canada and China. As Huawei entered the market, using a price aggressor strategy, it catalyzed mergers, resulting in the elimination of Motorola, Lucent, Alcatel, Siemens, Nortel, plus a reinforcement that led to the Japanese and Korean players to sell primarily to their home markets. The result is that in many markets during recent years, there were only two vendors left, and that left operators with little choice but to look elsewhere. The punchline is that going forward, due in part to Open RAN, and in part to the response of operators looking outside their traditional supplier base, we now have 10 RAN players who can bid on projects. And there is a multiplier on top of the 10 players, because going forward, operators can buy radio heads from different vendors than their primary RAN baseband vendor, essentially doubling the number of choices an operator has when making mobile RAN vendor decisions. Here is how we arrive at the conclusion that there were only two players per major geography. Just a couple years ago, the state of affairs was quite different; we had only Nokia, Ericsson, Huawei and ZTE as players, and last year, it became clear that in the US, only two major players were left. In China, the same could be said, with Huawei and ZTE as main suppliers (Ericsson has won business there and Nokia ceded the market in 2019). And in 2020, we’ve seen much of Europe and English-speaking Asia whittle down to two suppliers, as well. And here is how the procurement teams at operators have much choice in the future. The “Open RAN” vendors are now deemed viable given the success at Rakuten and the push by operators to demand Open RAN compliance, and these include Altiostar, Mavenir and Parallel Wireless. Nokia and Ericsson are invited to most, if not all bids worldwide. Huawei and ZTE are invited to many, but a declining number of bids in markets that are siding with the US viewpoint. We saw a turning point in late 2018 when AT&T announced it will buy from Samsung, who has now gotten a strong foothold in both India and the US. And, more recently, we have seen two Japanese players, NEC and Fujitsu, in some way filling in the void left by Huawei and ZTE’s woes in the US/China spat, as they get wins (Fujitsu recently won DISH) and get invited to bid (NEC and Fujitsu are being asked to bid on UK projects). Add these up and we have Altiostar, Mavenir, Parallel Wireless, Nokia, Ericsson, Huawei, ZTE, Samsung, NEC, Fujitsu. There are other factors at work that are adding to more RAN choices, as well. Two such trends are Facebook’s efforts, ONF’s efforts and the variety of radio head vendors who are now viable with Open RAN/FB/ONF efforts. Facebook has promoted projects such as Telecom Infra Project (TIP) that have many goals, including one that supports the goal of $1,000 radio heads (these cost much more from the major vendors). The Open Network Foundation (ONF) supports projects such as SD-RAN and Aether. Radios can be purchased from non-traditional sources, as well because with all three projects we have mentioned above (TIP, ONF SD-RAN and Open RAN), these allow radio purchases to be made separately from baseband purchases, literally doubling the choices that operators have when building out a roster of vendors. The trends in mobile RAN have changed significantly. Vendors with little to lose (startups and players entering new markets) are getting aggressive to grow their businesses. Incumbent vendors are at risk, as their business practice of selling baseband and radio simultaneously to captive operators is coming to an end. We may look back at this early 5G era and say there was a lot more to it than just the upgrade to 5G, and it begs the question, who will acquire whom to consolidate the market once again and get pricing under control. Qualcomm made many wireless-related announcements today from its San Diego, CA headquarters, in place of making a presentation at #MWC20 in Barcelona. Top announcements included its FSM100xx 5G small cell chips customer announcements, RF-chip availability, Wi-Fi 6E demonstrations, and 5G smartphone customer announcements. FSM100xx 5G RAN endorsements. Qualcomm announced its FSM 5G RAN platform in May 2018, targeting small cells and remote radio heads and enabling bothmmWave and sub-6 GHz spectrum using 10 nm process geometry. The company listed multiple vendors and operators in its press announcement relating to FMS100xx chips. Each of the vendors shared some interesting statistics, the most important of which we share here:
Qualcomm ultraSAW Filter. Expect availability in 2H20. Hit parity in performance in 2019 and now claims that its ultraSAW Filter will exceed performance of competitors, especially in high-bands.
Wi-Fi 6E. Qualcomm demonstrated 6 GHz operation between its Networking Pro Series (Wi-Fi 6 chips for Wi-Fi infrastructure like access points and routers). Qualcomm was not specific about the timetable for delivery of 6 GHz systems, but the company hinted that the 6 GHz demonstration “underscores Qualcomm’s readiness to extend its successful Wi-Fi 6 portfolio into the 6 GHz band for a transformative Wi-Fi 6E performance, pending regulatory approval.” The company expects that mobile devices using its Snapdragon 865 Mobile chips (intended for user devices like smartphones) can operate more than 3 Gbps when using the new 6 GHz spectrum, or 1.8 Gbps when using existing 2.4 GHz and 5 GHz available today. Qualcomm said its Networking Pro Series (Wi-Fi 6 chips) have been “deployed in more than 200 designs shipping or in development.” Qualcomm Snapdragon 865 Mobile Platform. The company announced that its chip system for mobile phones that features its second-generation 5G Modem-RF system, the Snapdragon X55, has been “announced or are in development” in over 70 designs, including those from top vendors such as OPPO, Samsung, Xiaomi and ZTE. Additionally, the company made VR devices and Personal Computer (PC) announcements including partners such as Facebook (VR) and Microsoft (PC). ORAN and CBRS were the main themes at Mobile World Congress Americas, held in Los Angeles. I have to say, though, that unlicensed was the third most important theme, though it will emerge to the main stage in future years.
ORAN encompasses several topics woven together. ORAN is a set of common interfaces that describe how various devices in mobile RAN work together. ORAN may also represent a new way of building radio networks. Recently, new vendors are being invited to bid on major mobile network projects, including Mavenir, Altiostar, Parallel and others. And, the major market share players in mobile RAN, which include Ericsson, Nokia, Huawei, Samsung, and ZTE are being asked by operators to support ORAN. The incumbent vendors are responding in various ways: Samsung, a challenger in the market, has whole-heartedly embraced ORAN, while Huawei has only recently acknowledged the existence of ORAN. Ericsson and Nokia have embraced ORAN with the view to embrace and extend - in the sense that Microsoft used this term in the 1990s. Based on presentations made by Ericsson, Nokia, and Samsung, we expect that the incumbents, Ericsson and Nokia,will embrace ORAN but will establish a path to continue serving customers with the same vertically integrated business models of today. We are eager to see the results of mobile network operator bidding to observe how many startups win projects for wide scale deployment. CBRS. Today, CBRS is available in the US market and has been so for about a month. We had an interesting opportunity to moderate three panels on the stage at MWCa and found some very interesting indoor/campus uses for CBRS, including WiFi backhaul, secure/critical communications, surveillance, IoT/sensor monitoring. Since CBRS indoor spectrum generally allows for more output power than for WiFi, the range is better. We see this as a key advantage for CBRS users, though enterprises who take advantage of the so-called OnGo service must pay various monthly fees such as those for the SAS and potentially other ongoing services. We expect that CBRS will be successful in certain verticals. Unlicensed. We believe the existence of CBRS could uncork the value of unlicensed spectrum at 900 MHz, 5 GHz, 2.4 GHz, and 6 GHz. We are conducting significant research into each of these and other spectrums. |
CHRIS DePUY
|