Last week, at Nokia's analyst meeting in Helsinki, it discussed its achievements and its challenges. The company’s successes include its traction and product introductions on the enterprise market, its market traction in selling Nokia’s end-to-end portfolio, and its 5G market momentum. Management reiterated that Nokia has signed 50 5G deals and its products are involved in 16 live 5G network. The company addresses some of its challenges, as well, including its delays in Systems on Chip (SoC) development progress, its diminished operating margins, competitive challenges in China, and an acknowledgement of increased price competition in the 5G era. We focus our writeup on two main topics: Enterprise and semiconductors.
Enterprise. The company leads with private LTE in selling to mostly outdoor environments where mobility needs are key. Nokia calls these networks “private wireless.” Generally, the target companies are those that are asset-intensive businesses, and Nokia has no current plans to go down-market. Nokia has sold to 120 enterprise customers as of September 2019, up from 80 as of June 2019.
Semiconductors. The company discussed semiconductors at great length at the meeting. Here is a summary of the main chips that were discussed.
0 Comments
Big themes at the show were WiFi-6, 6 GHz, and 802.11ah. We share some comments about the following organizations: WiFi Alliance, Commscope, Newracomm, Celeno, Cambium, Juniper Networks, On Semiconductor, Extreme Networks, Webb Search, Facebook, UK's Ofcom, Huawei, and 650 Group. The WiFi Alliance and a handful of other speakers commented that WiFi-6 has lower latency than 5G, but the Alliance conceded that cellular had better mobility. We think the WiFi community is not doing enough to promote WiFi-6’s low latency capabilities Commscope expects 6 GHz 802.11ax products to be shown at the CES show in January 2020 and that FEM and filters are not available today but will be by year-end or early 2020. Newracomm is an 802.11ah (900 MHz WiFi) chip company that had won an award at the show. It claims to be an early leader in the market and based on comments made during presentations, we expect by 2H20, we will see systems and IoT services based on these types of chips. Celeno, a stand-alone WiFi chip company, demonstrated radar on WiFi chip capability - the company won multiple award at the show. The company expects that a year from now, its Doppler on WiFi will emerge in products from SPs such as BT, Orange, and Comcast. The Doppler service only consumes about 3-5% of throughput capability when using Doppler and enables some very interesting capabilities such as fall detection, proximity detection, people counting and arm gestures. ON Semiconductor's Quantenna group won an award at the show. Cambium, in a presentation, explained that it is looking at an expansion to CBRS, 5G FWA backhaul, and 60 GHz. Juniper Networks has been hiring in Europe as it expands its enterprise sales capabilities. It’s recently hired team made a positive impression on the audience. We tweeted about how great and fun the presentation by recent hire Jussi Nivikiemi’s presentation. Extreme Networks presented its view that Artificial Intelligence won’t replace IT workers - it will just make them better. A spectrum consultant - Webb Search - said that DFS is not working in the UK in 5 GHz and wastes a lot of bandwidth - most WiFi products don’t bother trying to operate one the spectrum covered by DFS. He advocated for using a database in the sky approach similar to what is being proposed for 6 GHz. UK's Ofcom representative, Christina Data, explained that it is researching both 5 GHz and 6 GHz as a comprehensive solution. Ms. Data acknowledged that DFS may have some challenges and was diplomatic in response to questions about how 6 GHz will emerge. Huawei advocated for an unpopular viewpoint (at a WiFi show) that 6 GHz device makers should register for IMT designation. In a panel that included German WiFi equipment vendor Lancom and Commscope, the other two vendors made counterpoints, including that this move to IMT will delay the rollout of 6 GHz by at least four years. Facebook is advocating a non-AFC approach to low power 6 GHz in the US market. We have learned through multiple sources that it has recently a demonstrated a prototype of an AFC, however. 650 Group. The Chris DePuy presentation hit on three topics: unlicensed and shared spectrum impact on WiFi, WiFi and WiFi-6 shipments, and WiFi semiconductors.
We attended the Mavenir analyst meeting last week. The company has made progress in developing its radio products, while at the same time it has grown revenues approximately 15% this year and bookings are estimated to reach $510M this year. The company expects to achieve a 28% EBITDA margin this year, greater than last year’s profitability rate. The company has 3,100 full time employees, up significantly from last year. We met executives hired recently with impressive pedigrees. The company is positioning itself as a US based end-to-end mobile network operator supplier.
In 2019, most of the company’s revenues are from the telecom core products. Generally, the company is taking a software-only approach to the mobile network market, which in many ways is what operators want from its suppliers. By taking a software-only approach, the company leaves some of its destiny in the hands of others, especially when it comes to hardware acceleration and radio units. The company has achieved success in VoLTE and RCS. It is using the growing brand it has developed in these telecom core services areas to get access to RAN projects. The company describes its RAN activities and its partner’s radio capabilities as being able to handle radio connection densities on the order of 200 users per radio. Mavenir plans to bring User Plane Forwarding capabilities for packet core to market next year with hardware acceleration; chip suppliers that were mentioned include Intel and Mellanox (now Nvidia). The company is investigating various acceleration techniques such as GPU, ARM and FPGA, which presumably will allow the company to provide a denser baseband system than is currently possible. The company is targeting mobile operators that are making initial deployments of O-RAN based radio systems. Mavenir explained that European RFIs are allocating a certain number of RAN sites to O-RAN. The company claims to have recently been awarded some O-RAN contracts that have limited deployment scenarios. Vodafone CEO made public statements in support of working with Mavenir recently. ORAN and CBRS were the main themes at Mobile World Congress Americas, held in Los Angeles. I have to say, though, that unlicensed was the third most important theme, though it will emerge to the main stage in future years.
ORAN encompasses several topics woven together. ORAN is a set of common interfaces that describe how various devices in mobile RAN work together. ORAN may also represent a new way of building radio networks. Recently, new vendors are being invited to bid on major mobile network projects, including Mavenir, Altiostar, Parallel and others. And, the major market share players in mobile RAN, which include Ericsson, Nokia, Huawei, Samsung, and ZTE are being asked by operators to support ORAN. The incumbent vendors are responding in various ways: Samsung, a challenger in the market, has whole-heartedly embraced ORAN, while Huawei has only recently acknowledged the existence of ORAN. Ericsson and Nokia have embraced ORAN with the view to embrace and extend - in the sense that Microsoft used this term in the 1990s. Based on presentations made by Ericsson, Nokia, and Samsung, we expect that the incumbents, Ericsson and Nokia,will embrace ORAN but will establish a path to continue serving customers with the same vertically integrated business models of today. We are eager to see the results of mobile network operator bidding to observe how many startups win projects for wide scale deployment. CBRS. Today, CBRS is available in the US market and has been so for about a month. We had an interesting opportunity to moderate three panels on the stage at MWCa and found some very interesting indoor/campus uses for CBRS, including WiFi backhaul, secure/critical communications, surveillance, IoT/sensor monitoring. Since CBRS indoor spectrum generally allows for more output power than for WiFi, the range is better. We see this as a key advantage for CBRS users, though enterprises who take advantage of the so-called OnGo service must pay various monthly fees such as those for the SAS and potentially other ongoing services. We expect that CBRS will be successful in certain verticals. Unlicensed. We believe the existence of CBRS could uncork the value of unlicensed spectrum at 900 MHz, 5 GHz, 2.4 GHz, and 6 GHz. We are conducting significant research into each of these and other spectrums. Aruba, a Hewlett Packard Enterprise company’s new CX 6300/6400 switch launch was significant for the industry. The launch ushered in next-generation enterprise switches at the second-largest vendor in the world using its custom, 7th generation ASICs, along with updates to the operating system. HPE Aruba’s products are high-end, clearly targeting large enterprises. By offering one end-to-end portfolio, HPE Aruba will be able to target additional parts of the campus market, increasing its addressable market and simplify the product offerings.
High-speed multigig ports and uplinks and robust stacking allow for the support of WiFi 6 and beyond along with a nimble approach to many new IoT use cases connecting to campus switches. For example, the switches can be rebooted without the devices connected to the PoE port losing power (always-on POE), a perfect feature for industrial use cases like lighting and IoT sensors. As we look at the future of networking on the campus, the ability to automate (eventually with full AI-control) is necessary to allow the human to scale with the number of and diversity of devices entering the campus. Campus switching is moving more into an infrastructure and supportive role with a diversity of connections beyond just IP Phones and desktop PCs. In North America, as large enterprise campus network spends starts to plateau, and mid-market continues to grow, this will cause the vendor landscape to shift fairly significantly compared to what the market has historically seen. With HPE Aruba’s new products shipping later this year, we expect 2020 to be an exciting year of change in the campus. |
CHRIS DePUY
|