![]() Cloud providers are rapidly evolving their network topology architectures as they move towards 400 Gbps and beyond. One trend resonating across the industry is the move towards CLOS switch rack or Distributed Disaggregated Chassis (DDC) topologies and the use of copper above the server access layer. However, the distances DAC can serve continue to shrink with each increase in speed, and fiber remains costly. DDC will ramp in 2H20. Both Service Provider and Data Center networks will take advantage of the power density provided by 25.6Tbps switch silicon to deploy dense in-rack CLOS architectures. Active Electrical Cables (AEC) such as HiWire™ AEC are a key enabling technology for DDC architectures. In many ways, DDC CLOS architectures use copper cables as a replacement for the traditional modular chassis backplane. As we look towards this architecture change, we see three unique form factors of cable emerging to replace DAC and AOC. Active Optical Cable (AOC) Replacement Products like Credo HiWire™ SPAN AEC will begin to replace AOC. A fully populated rack of AOC can often have the same power as the switches themselves, and the current supply chain does not have consistent high-volume availability. AOC also has a high relative cost of a fiber solution. This type of copper solution will have longer distances and will potentially move into use cases around the middle of row connectivity. Gear Shifting Splitter Cables Products like Credo HiWire™ SHIFT AEC will gearbox between SERDES speeds. While today, the most common option is splitting a 56 Gbps SERDES into two 25 Gbps ports, we expect this type of cable to become more popular when 112 Gbps SERDES begin to ship. For example, a purpose-built 48-port 100 Gbps switch with 112 Gbps SERDES could become multipurpose and split down to 25/50 Gbps ports for server access or switch-to-switch connectivity. Low Cost, Short-Reach Cables Products like Credo HiWire™ CLOS AEC will begin to enter the market for short distances within the rack. Today DAC comes in one type of solution; however, with DDCs becoming more popular, a new type of purpose-built and short-reach cable should emerge to connect switches within a rack. By purpose-building for this use case, the cable should be cheaper, thinner and lower power, which is attractive when trying to pack so many cables into a single rack. We expect that newer copper technologies will also benefit from improved process geometries over the next 12-18 months. Moving from 28nm to 12nm and below will help drive down cost in the interconnect part of the market in a very similar way of the moving from 28nm to 16nm to 7nm had huge cost savings in the switch ASIC itself. By Alan Weckel, Founder and Technology Analyst at 650 Group.
0 Comments
Qualcomm made many wireless-related announcements today from its San Diego, CA headquarters, in place of making a presentation at #MWC20 in Barcelona. Top announcements included its FSM100xx 5G small cell chips customer announcements, RF-chip availability, Wi-Fi 6E demonstrations, and 5G smartphone customer announcements. FSM100xx 5G RAN endorsements. Qualcomm announced its FSM 5G RAN platform in May 2018, targeting small cells and remote radio heads and enabling bothmmWave and sub-6 GHz spectrum using 10 nm process geometry. The company listed multiple vendors and operators in its press announcement relating to FMS100xx chips. Each of the vendors shared some interesting statistics, the most important of which we share here:
Qualcomm ultraSAW Filter. Expect availability in 2H20. Hit parity in performance in 2019 and now claims that its ultraSAW Filter will exceed performance of competitors, especially in high-bands.
Wi-Fi 6E. Qualcomm demonstrated 6 GHz operation between its Networking Pro Series (Wi-Fi 6 chips for Wi-Fi infrastructure like access points and routers). Qualcomm was not specific about the timetable for delivery of 6 GHz systems, but the company hinted that the 6 GHz demonstration “underscores Qualcomm’s readiness to extend its successful Wi-Fi 6 portfolio into the 6 GHz band for a transformative Wi-Fi 6E performance, pending regulatory approval.” The company expects that mobile devices using its Snapdragon 865 Mobile chips (intended for user devices like smartphones) can operate more than 3 Gbps when using the new 6 GHz spectrum, or 1.8 Gbps when using existing 2.4 GHz and 5 GHz available today. Qualcomm said its Networking Pro Series (Wi-Fi 6 chips) have been “deployed in more than 200 designs shipping or in development.” Qualcomm Snapdragon 865 Mobile Platform. The company announced that its chip system for mobile phones that features its second-generation 5G Modem-RF system, the Snapdragon X55, has been “announced or are in development” in over 70 designs, including those from top vendors such as OPPO, Samsung, Xiaomi and ZTE. Additionally, the company made VR devices and Personal Computer (PC) announcements including partners such as Facebook (VR) and Microsoft (PC). We review the new announcements Cisco made public for the now-cancelled MWC20 show, and they are: BNG on unified control plane, Unified Domain Center-to-DNA Center interoperation, IoT Control Center, SP Services Edge (CDN), new Open RAN partners, NCS 540 router with CPRI support, and Crosswork automation platform. Since MWC is a show primarily focused on mobile and wireless, we think the two announcements that are most “wireless” in nature were: (a) Unified Domain Center announcement, which will unify management of WiFi to cellular operator LTE is interesting and (b) the partnerships Cisco announced with Open RAN vendors like Parallel Wireless, NEC and World Wide Technology.
Summary of announcements by Cisco: Core Networks
Unified Domain Center
IOT Control Center
SP Services Edge
Converged SDN Transport “New Engines”
Open RAN
NCS 540
Automated Network Operations
Trusted path routing
Federated Wireless announced that it will offer a managed service that will be offered to enterprises that plan to operate private cellular networks (both 4G and 5G). For companies to use Citizens Broadband Radio Service (CBRS) spectrum (3.5 GHz) in the US market, a service provider called a SAS is required; Federated is a pioneer in this SAS market. What the company announced today, though, is that not only is it going to offer SAS services to customers, but it will now offer discovery, planning, design, building, operations and support services that will allow enterprise to get the benefit of cellular coverage in their facilities.
Another very interesting facet to the Federated Wireless entry to managed services is that it has also announced selling partnerships with Amazon Web Services and Microsoft Azure. In summary, customers can visit each AWS or Azure sites, click some buttons and then Federated will show up and build and operate the cellular network to allow services such as critical communications (like employee-to-employee communications), mobility services (such as trucks moving onsite), Wi-Fi backhaul (without the need for installing new conduit and wires), IoT sensor deployment, and many other uses. Federated will be an enabler to companies who don't want to work with traditional mobile network operators in order to expand cellular coverage to their corporate locations. What this means is in the US market, companies may contact AT&T, Verizon or T-Mobile to get licensed cellular, but now they can contact Federated Wireless to get their own shared-spectrum, in this case CBRS, network that carries only their traffic. We expect that Wi-Fi 6E products to hit the market as soon as 3Q20 in the US and by 4Q20 in Europe. The appeal of these new 802.11ax products is that they operate not just in 2.4 GHz and 5 GHz, as 802.11ac products have, but now add 6 GHz spectrum support. The US products will likely support 1.2 GHz of spectrum, while European products may support about 0.5 GHz of spectrum.
We expect that throughput of higher-end Wi-Fi 6E access points may exceed 5 Gbps under some operating conditions, which may drive the discussion towards 10 Gbps switching. The higher throughput "backhaul" may mean that MultiGig Ethernet (that operates at 2.5 Gbps and/or 5 Gbps and takes advantage of older copper cabling installed primarily for 1 Gbps switches) could get another use-case compared to a scenario where 6 Ghz support never came to market. There is also another potential that the market moves faster to 10 Gbps and/or fiber. We will be publishing our forecasts for Wi-Fi 6 (802.11ax), MultiGig Ethernet and 10 Gbps Ethernet in a few weeks. These forecasts will incorporate final 2019 numbers from vendors, as well as our updated views on 2020 macroeconomic scenarios, and the potential coronavirus impact (corvid-19). |
CHRIS DePUY
|